
10/29/18

1

SEMANTIC ANALYSIS
Baishakhi Ray

Fall 2018

Programming Languages & Translators 

These slides are motivated from Prof. Alex Aiken and Prof. Stephen 
Edward

The Compiler So Far 

§ Lexical analysis 
§ Detects inputs with illegal tokens 

§ Parsing 
§ Detects inputs with ill-formed parse trees 

§ Semantic analysis 
§ Last “front end” phase 
§ Catches all remaining errors 

What’s Wrong W i th This?

a + f(b, c)
Is a defined? 

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f acceptwhatever b and c are?

Scope questions Type questions

What’s Wrong W i th This?

a + f(b, c)
Is a defined? 

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f acceptwhatever b and c are?

Scope questions Type questions

parsing 
alone 
cannot 
answer these 
question.

Scope

§ The scope of an identif ier is the 
portion of a program in which that 
identif ier is accessible.

§ The same identif ier may refer to 
different things in different parts of 
the program.
§ Different scopes for same name don’t 

overlap. 

§ An identif ier may have restricted 
scope.

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4

Static Vs. Dynamic Scoping

§ Most modern languages have static scope 
§ Scope depends only on the program text, not runtime behavior 
§ Most modern languages use static scoping. Easier to understan d, harder to break 

programs.

§ A few languages are dynamically scoped 
§ Scope depends on execution of the program 
§ Lisp, SNOBOL (Lisp has changed to mostly static scoping)
§ Advantage of dynamic scoping: ability to change  environment.
§ A way to surreptitiou sly pass additional parameters.



10/29/18

2

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is  
declared and ends at the end  of 
its block.

From the CLRM, “The scope  of an 
identif ier declared at  the head of
a block begins at  the end of its 
declarator, and  persists to the 
end of the  block.”

void foo()
{

int x;

}

Hiding a Definitio n

Nested scopes can hide earlier  
definitions, giving a hole.

From the CLRM, “ I f  an  
identif ier is explicitly declared  
at the head of a block,  
including the block  
constituting a function, any  
declaration of the identif ier  
outside the block is  suspended 
until the end of  the block.”

void foo()
{
int x;

while ( a < 10 ) {
int x;

}

}

Dynamic Definitions in TEX

% \x, \y undefined
{
% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\ f i

% \x defined, \y may be undefined
}
% \x, \y undefined

Open vs. Closed Scopes

§ An open scope begins life including the symbols in its outer  scope.

§ Example: blocks in Java

{
i n t x;
f o r  (;;) {

/*  x vis ible here * /
}

}

§ A closed scope begins life devoid of symbols.  Example: structures in C.

s t r u c t  f o o  {  i n t  x;  f l o a t y ; }

Symbol Tables 

§ A symbol table is a data structure that tracks the current bindings of 
identif iers 

§ Can be implemented as a stack 

§ Operations 
§ add_symbol(x) push x and associated info, such as x’s type, on the stack 
§ f ind_symbol(x) search stack, starting from top, for x. Return first x found or 
NULL if none found 

§ remove_symbol() pop the stack when out of scope

§ Limitation:
§ What if two identical objects are defined in the same scope multiple times.
§ Eg: foo(int x, int x)

Advanced Symbol Table

§ enter_scope() start a new nested scope 

§ f ind_symbol(x) finds current x (or null) 

§ add_symbol(x) add a symbol x to the table 

§ check_scope(x) true if x defined in current scope 

§ exit_scope() exit current scope



10/29/18

3

Types

§ What is a type? 
§ The notion varies from language to language 

§ Consensus 
§ A set of values 
§ A set of operations on those values 

§ Classes are one instantiation of the modern notion of type 

Why Do We Need Type Systems? 

§ Consider the assembly language fragment 
add $r1, $r2, $r3 

§ What are the types of $r1, $r2, $r3? 

§ Certain operations are legal for values of each type 
§ It doesn’t make sense to add a function pointer and an integer in C 
§ It does make sense to add two integers
§ But both have the same assembly language implementation! 

Type Systems

§ A language’s type system specif ies which operations are valid for which types 

§ The goal of type checking is to ensure that operations are used with the 
correct types 
§ Enforces intended interpret ati on of values, because nothing else will! 

§ Three kinds of languages: 
§ Statically typed: All or almost all checking of types is done as part of compilation 

(C, Java) 
§ Dynamically typed: Almost all checking of types is done as part of program 

execution (Python) 
§ Untyped: No type checking (machine code) 

Static vs. Dynamic Typing

§ Static typing proponents say: 
§ Static checking catches many programmi n g errors at compile time 
§ Avoids overhead of runtime type checks 

§ Dynamic typing proponents say: 
§ Static type systems are restrictive 
§ Rapid prototypin g difficult within a static type system 

§ In practice 
§ code written in statically typed languages usually has an escape mechanism • 

Unsafe casts in C, Java 
§ Some dynamically typed languages support “pragmas” or “advice” • i.e., type 

declaration s.

Type Checking and Type Inference 

§ Type Checking is the process of verifying fully typed programs 

§ Type Inference is the process of filling in missing type information 

§ The two are different, but the terms are often used interchangeably

§ Rules of Inference 
§ We have seen two examples of formal notation specifying parts of a compiler : 

Regular expressions, Context-fre e grammars 
§ The appropriat e formalism for type checking is logical rules of inference 

Why Rules of Inference? 

§ Inference rules have the form If Hypothesis is true, then Conclusion is true 

§ Type checking computes via reasoning

If E1 and E2 have certain types, then E3 has a certain type 

§ Rules of inference are a compact notation for “If-Then” statements 



10/29/18

4

From English to an Inference Rule 

§ The notation is easy to read with practice 

§ Start with a simplif ied system and gradually add features 

§ Building blocks 
§ Symbol ∧ is “and” 
§ Symbol ⇒ is “ if-then”
§ x:T is “x has type T”

§ If e1 has type Int and e2 has type Int, then e1 + e2 has type Int
§ (e1 has type Int ∧ e2 has type Int) ⇒ e1 + e2 has type Int
§ (e1: Int ∧ e2: Int) ⇒ e1 + e2: Int
§ It is a special case of Hypothesis1 ∧ . . . ∧ Hypothesisn ⇒ Conclusion (This is an 

inference rule). 

Notation for Inference Rules 

§ By tradition inference rules are written

⊢	Hypothesis …⊢	Hypothesis
⊢	Conclusion

⊢	e:T means “it is provable that e is of type T

Two Rules

⊢	i	 is	𝑎 𝑛 	'()*+*,	-')*,.-

⊢	i:	 Int
[Int]

⊢	e1:	Int							⊢	e2:	Int
⊢	e1+e2:	Int [Add]

⊢	e:	Boo𝑙
⊢!𝑒 :<==- [Not]

§ These rules give templates describing how to type integers and + expressions 

§ By filling in the templates, we can produce complete typings for expressions

§ Example: 1 + 2?

Type Checking Proofs 

§ Type checking proves facts e: T 
§ Proof is on the structure of the AST 
§ Proof has the shape of the AST 
§ One type rule is used for each AST node 

§ In the type rule used for a node e: 
§ Hypotheses are the proofs of types of e’ s sub-expressions 
§ Conclusion is the type of e 

§ Types are computed in a bottom-up pass over the AST 

A Problem 

§ What is the type of a variable reference? 

§
>	'?	.	@.,'.A-*

⊢>:?

§ The local, structural rule does not carry enough information to give x a type. 

A solution

§ Put more information in the rules! 

§ A type environment gives types for free variables 
§ A type environmen t is a function from ObjectIdenti fie rs to Types 
§ A variable is free in an expression if it is not defined within the expression

§ Type Environments
§ Let O be a function from ObjectIdenti fie rs to Types 
The sentence O ⊢	e: T 

is read: Under the assumption that variables have the types given by O, it is 
provable that the expression e has the type T

§
C > DE

⊢>:E



10/29/18

5

Implementing Type Checking

TypeCheck(Environment, e1 + e2) = { 
T1 = TypeCheck(Environment, e1); 
T2 = TypeCheck(Environment, e2); 
Check T1 == T2 == Int; 
return Int; }

𝑂 ,𝑀 , 𝐶 ⊢ 𝑒1 : 𝐼𝑛𝑡 			𝑂, 𝑀 , 𝐶 ⊢ 𝑒2 : 𝐼𝑛𝑡

𝑂 , 𝑀 ,𝐶 ⊢ 𝑒1 + 𝑒2: 𝐼𝑛𝑡

Binding Time

When are bindings created and destroyed?

Binding Time

When a name is connected to an object.

Bound when Examples
language designed  
language implemented  
Program written  
compiled
linked  
loaded  
run

if else  
datatype widths  
foo bar
static addresses,code  
relative addresses  shared
objects
heap-allocated objects

Binding Time and Efficiency

Earlier binding time ⇒ more effic iency, less flexibility

Compiled code more effic ient than interpreted because  
most decis ions about what to execute made beforehand.

switch (statement ) {

case add:
r  = a + b;
break;

add %o1, %o2, %o3
case sub:

r  = a - b;
break;

/* ... */
}

Binding Time and Efficiency

Dynamic method dispatch in OO languages:

c l a s s  Box : Shape {
pub l i c  void draw() { ...}

}

c l a s s  C ir c le  : Shape {
pub l i c  void draw() { ...}

}

Shape s;
s.draw(); /* Bound at run time */

Binding Time and Efficiency

Interpreters better if language has the ability to create new  
programs on-the-fly.

Example: Ousterhout’s Tcl language.

Scripting language originally interpreted, later  
byte-compiled.

Everything’s a string.

s e t   a 1
s e t   b 2
puts "$a + $b = [expr $a + $b]"



10/29/18

6

Static Semantic Analysis

How do we validate names, scope, and types?

Static Semantic Analysis

Lexical analysis: Each token is valid?

i f  i  3 "This"  
#a1123

/* valid Java tokens */
/* not a token */

Syntactic analysis: Tokens appear in the correctorder?

f o r  ( i  = 1 ; i  < 5 ; i ++ ) 3 + "foo"; /* valid Java syntax */
f o r break /* invalid syntax */

Semantic analysis: Names used correctly? Types consistent?

i n t  v   = 42 + 13;
r e t u r n   f  + f(3);

/* valid in Java (if v is new) */
/* invalid */

What To Check

Examples from Java:

Verify names are defined and are of the right type.

i n t  i  = 5;
i n t  a = z; /* Error: cannot find symbol */
i n t  b = i[3]; /* Error: array required, but int found */

Verify the type of each expressionis consistent.

i n t  j  = i  + 53;
i n t  k   = 3 + "hello"; /* Error: incompatible types */  
i n t  l = k(42); /* Error: k is not a method */  
i f  ("Hello") r e t u r n  5; /* Error: incompatible types */  
S t r i n g  s  = "Hello";
i n t m         = s; /* Error: incompatible types */

How To Check Expressions: Depth-first AST Walk

Checking function: environment → node → type

1 - 5

-

1 5

check(−)
check(1) = int  
check(5) = int
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+)
check(1) = int  
check("Hello") = string
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true  
about the nodes below it? What is the type of the node?

How To Check: Symbols
Checking function: environment → node → type

1 + a

+

1 a

check(+)
check(1) = int  
check(a) = int  
Success: int + int = int

The key operation: determining the type of a symbol when  
it is encountered.

The environment provides a “symbol table” that holds  
information about each in-scopesymbol.

A Static Semantic Checking Function

A big function: “check: ast → sast”

Converts a raw AST to a “semantically checked AST”

Names and types resolved

AST
type expression = 

IntConst of int
| Id of string
| Call of string * expression list
| ...

SAST 
type expr_detail =

IntConst of int
| Id of variable_decl
| Call of function_decl * expression list
| ...type expression = expr_detail * Type.t



10/29/18

7

The Type o f Types

Need an OCaml type to represent the type of something in  your
language.

An example for a language with integer, structures, arrays,  and
exceptions:

type t  = (* can’t call it " type" since that’s reserved *)
Void

| I n t
| S t r u c t  o f  s t r i n g * ( ( s t r i n g * t )  array ) (* name, fields *)
| Ar r a y  o f  t * i n t .                  (* type, size *)
| Except i on o f s t r i n g

Translation Environments

Whether an expression/statement/fu nctio n is correct  
depends on its context. Represent this as an object with  
named fields since you will invariably have to extend it.

An environment type for a C-like language:

type t r a n s l a t io n _e n vi r on m en t  ={
scope : s y m b o l_ ta bl e; (* symbol table for vars *)

r e t u r n _ t y p e : Types.t; (* Function’s return type *)  
i n _ s w i t ch : b o o l; (* if we are in a switch stmt *)  
c a s e _ l a be ls  : B ig _ in t .b ig _ in t  l i s t  r ef; (* known case labels *)  
b r e a k _ l a b el   : l a b e l o p t io n; (* when break makes sense *)  
c o n t i n u e _ la be l  : l a b e l o p ti on ; (* when continue makes sense *)  
e x c e p t io n_ sco pe  : exception_scope; (* sym tab for exceptions *)  
l a b e l s   : l a b e l l i s t r ef; (* labels on statements *)  
f o r w a r d _ go to s : l a b e l l i s t  re f; (* forward goto destinations *)

}

A SymbolTable

Basic operation is string → type. Map or hash could do this,  
but a lis t is fine.

type s y m b o l _t ab le  ={
p a r e n t  : s y mb o l_ ta bl e op t io n;  
v a r i a b l e s  : v ar i ab l e_ d ec l l i s t

}

l e t  r e c  f i nd _ v ar i a bl e  (scope : s y m b o l _t ab le ) name =
t r y

L i s t . f i n d  (fun (s, _, _, _) -> s  = name) s c o p e .va r iab le s
w i t h  Not_found ->

match scope.paren t w i t h
Some(parent) -> f i n d _ v a r i a b l e  p a r en t name

| _ -> r a i s e Not_found

Checking Expressions: Literals and Identifiers

(* Information about where we are *)
type t r a n s l a t io n _e n vi r on m en t  ={

scope : s y m b o l _t ab le ;
}

l e t  r e c  e xp r  env =f unc t i on

(* An integer constant: convert and return Int type *)
A s t . I n tCo ns t(v) -> Sast.IntConst(v ), Ty p e s . I nt

(* An identifier: verify it is in scope and return its type *)
| Ast.Id(vname) ->

l e t  v d e c l   = t r y
f i n d _ v a r i a b l e env.scope vname (* locate a variable by name *)

w i t h  Not_found ->
r a i s e  (Error("undeclared identifier " ^vname))

i n
l e t  (_, t y p ) = v d e c l  i n  (* get the variable’s type *)
Sast.Id(vdecl ), t y p

| ...

Checking Expressions: Binary Operators

(* let rec expr env = function *)

| A.BinOp(e1, op, e2) ->
l e t  e1  = e x p r env e1 (* Check left and right children *)
and e2 = e x p r  env e2 i n

l e t  _, t 1 = e1 (* Get the type of each child *)
and _, t 2  = e2 i n

i f  op <> Ast.Equal && op <> Ast.NotEqual then
(* Most operators require both left and right to be integer *)  
( r e q u i r e _ i n te g e r  e1 "Left operand must be integer";

r e q u i r e _ i n t e ge r  e2 "Right operand must be integer")
e l s e

i f  n o t  (weak_eq_type t 1  t 2 ) then
(* Equality operators just require types to be "close" *)
e r r o r  ("Type mismatch in comparison: left is "  ̂ 

P r i n t e r.s tr i n g_ o f_ s as t_ t yp e  t 1   ̂"\" right is \""  ̂ 
P r i n t e r.s tr i n g_ o f_ s as t_ t yp e  t 2  ^ "\""

) l o c ;

Sast.BinOp(e1, op, e2), Ty p e s . I nt  (* Success: result is int *)

Checking Statements: Expressions, If

l e t  r e c  s tm t  env = f unc t i on

(* Expression statement: just check the expression *)
Ast.Expression(e ) -> Sast.Expressio n(ex pr env e)

(* If statement: verify the predicate is integer *)
| A s t . I f(e , s1, s2) ->

l e t  e = check_expr env e i n  (* Check the predicate *)
r e q u i r e _ i n t e ge r  e "Predicate of if must be integer";

S a s t . I f(e, s t m t env s1, s t m t  env s2) (* Check then, else *)



10/29/18

8

Checking Statements: Declarations

(* let rec stmt env = function *)

| A.Local(vdecl) ->
l e t  d e c l , ( i n i t , _) = c h e c k _ lo ca l vd e cl  (* already declared? *)
i n

(* side-effect: add variable to the environment *)
env.scope.S.v ar ia ble s <- d e c l  ::env.scope.S.vari abl es ;

i n i t  (* initialization statements, if any *)

Checking Statements: Blocks

(* let rec stmt env = function *)

| A.Block(sl) ->

(* New scopes: parent is the existing scope, start out empty *)

l e t  scope’ = { S.parent = Some(env.scope); S .v a r i ab le s = []}
and e x c e p t i on s’ =

{ excep_parent = Some(env.exception _sco pe ); e x c e p t io n s = []}
i n

(* New environment: same, but with new symbol tables *)
l e t  env’ = { env w i t h  scope = scope’;

e x c e p t io n_ sco pe  = e x ce pt io ns ’ } i n

(* Check all the statements in the block *)

l e t  s l  = List.map (fun s  -> s t m t  env’ s) s l i n
scope’.S.var ia bl es <-

L i s t . r e v  scope’.S.variables; (* side-effect *)

Sast.Block(scope’, s l ) (* Success: return block with symbols *)


