Programming Languages & Translators

SEMANTIC ANALYSIS

Baishakhi Ray

Fall 2018

These slides are motivated from Prof. Alex Aiken and Prof. Stephen m
Edward —

10/29/18

The Compiler So Far

= Lexical analysis
= Detects inputs with ilegal tokens

= Parsing
= Detects inputs with il-formed parse trees

= Semantic analysis
= Last “front end” phase
= Catches al remaining errors

What's Wrong With This?

a + f(b, ©

What's Wrong With This?

a + f(b, ©

-
Is a defined?
Is f defined?
Are b and c defined? parsing
. alone
Is fafuncton of two arguments? L cannot

Canyou add whatever a isto whatever f returns?

Does f acceptwhatever b and c are?

Scope questions Type questions

answer these
question.

Scope

Names Bindings Objects
= The scope of an identifier is the
portion of a program in which that
identifier is accessible. NAME |
= The same identifier may refer to
different things in different parts of

the program. Name2 bj 2
= Different scopes for same name don't
overap.
= An identifier may have restricted Name3
scope.

Named4

Static Vs. Dynamic Scoping

= Most modern languages have static scope
= Scope depends only on the progmm text, not mntime behavior
= Most modem languages use staic scoping Easier to undesstand, harder
programs.

= A few languages are dynamically scoped
+ Scope depends on execution of the program
+ Lisp, SNOBOL (Lisp has changed to mostly static scoping)
+ Advantage of dynamic scoping: ability to change environment
= A way to sureplitiously pass addtional parameters,

to break

10/29/18

Basic Static Scope in G, C++, Java, etc.

A name begins life where it is
declared and ends at the end of
its block.

From the CLRM, “The scope of an
identifier declared at the head of
a block begins at the end of its
declarator, and persists to the
end of the block.”

void foo()

int x;

Hiding a Definition

void foo()
Nested scopes can hide earlier {

definitions, giving a hole. int x;
while C a< 10) [}

From the CLRM, “If an int x;

identifier is explicitly declared

at the head of a block, _
including the block

constituting a function, any 1
declaration of the identifier

outside the block is suspended

until the end of the block.”

Dynamic Definitions in TEX

% \x, \y undefined
% \x, \y undefined
\def x 1
% \x defined, \y undefined

\ifum \a <5
\def \y 2
\fi

% \x defined, \y may be undefined

\x, \y undefined

Open vs. Closed Scopes

= An open scopebegins life including the symbolsin its outer scope.
= Example: blocksin Java

i
int x;
for () {
/+ x visible here *
¥
i

= A closed scope begins life devoid of symbols. Example: structures in C.

struct foo {intx float y:}

Symbol Tables

= A symbol table is a data structure that tracks the current bindings of

identifiers
= Can be implemented as a stack

= Operations

= add_symbol(x) push x and associated info, such as Xs type, on the stack
. NDzﬂsymbol(x) ar(cjh stack, starting from top, for x. Return first x found or

L7if none foun

= remove_symbol() pop the stack when out of scope

= Limitation:

= What if two identical objects are defined in the same scope multiple times.

= Eg: foo(int x, int x)

Advanced Symbol Table

= enter_scope() start a new nested scope

= find_symbol(x) finds current x (or nul)

= add_symbol(x) add a symbol x to the table

= check_scope(x) true if x defined in current scope

= exit_scope() exit current scope

10/29/18

Types

= What is a type?

= The nofion vades fom language to language

= Consensus
= A set of values
= A set of operations on those values

= Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

= Consider the assembly language fragment
add $rl, $r2, $r3

= What are the types of $r1, $r2, $r3?

= Certain operations are legal for values of each type
= It doesn't make sense to add a function pointer and an integer in C
= It does make sense to add two integers
= But both have the same assembly language implementation!

Type Systems

= A language’s type system specifies which operations are valid for which types

= The goal of type checking is to ensure that operations are used with the
correct types
- Enfoces intended intepretation of values, because nothing else willl

Three kinds of languages:

Statically typed: Al or almost all checking of types is done as pat of compilation
(C, Java)

Dynamically type: Amost all checking of types is done as pat of progam
execution (Python)

Untyped: No type checking (machine code)

Static vs. Dynamic Typing

= Static typing proponents say:
* Satic checking catches many pogamming emors at compile time
* Avoids ovehead of mntime type checks

= Dynamic typing proponents say:
= Staic type systems are restictive
= Rapid prototyping difficult within a static type system

= In practice
* code witten in staticaly typed languages usually has an escape mechanism
Unsafe casts in C, Java
= Some dynamically typed languages suppot “pragmas” or “advice’ - ie., type
declarations

Type Checking and Type Inference

= Type Checking is the process of verifying fully typed programs
= Type Inference is the process of filing in missing type information
= The two are different, but the terms are often used interchangeably

= Rules of Inference

= We have seen two examples of fomal notation specifying pats of a compiler
Regular expressions, Contextfiee grammars

« The appropriate fomalism for type checking is logical mles of inference

Why Rules of Inference?

= Inference rules have the form If Hypothesis is true, then Conclusion is true
= Type checking computes via reasoning
If E1 and E2 have certain types, then E3 has a certain type

= Rules of inference are a compact notation for “If-Then” statemerts

10/29/18

From English to an Inference Rule

= The notation is easy to read with practice
= Start with a simplified system and gradually add features

= Building blocks
= Symbol A is “and”
- Symbol = is “ifthen”
» xT is “x has type T’

= If e1 has type Int and ez has type Int, then e1 + ez hastype Int
» (el has type Int A e2 has type In) = el + e2 has type Int
sl It A e) = el +e2 Int

= It is a special case of Hypothesist A ... A Hypotesisn = Conclusion (This is an
inference rule).

Notation for Inference Rules

= By tradition inference rules are written

+ Hypothesis ... Hypothesis
——ComtsT——

+eT means “it is provable that e is of type T

Two Rules

Fiisan integerliteral
—_— it
i Int

rel:Int re2:Int [Add]
Te T

+e:Bool
T Bool

[Not]

= These rules give templates describing how to type integers and + expressions
= By filing in the templates, we can produce complete typings for expressions
= Example: 1 + 2?

Type Checking Proofs

= Type checking proves facts e: T
= Proof is on the structure of the AST
= Proof has the shape of the AST
= One type rule is used foreach AST node

= In the type rule used for a node e:
= Hypotheses are the proofs of types of € s sub-expressions
= Conclusion is the type of e

= Types are computed in a bottom-up pass over the AST

A Problem

= What is the type of a variable reference?
. Xis avariable
[—

= The local, structural rule does not carry enough information to give x a type.

A solution

= Put more information in the rules!

= A type environment gives types for free variables
* A type envionment is afunction from Objectidentifiers to Types
* A vaiable is free in an expression if itis not defined within the expression

= Type Environments
+ Let Obe a function from Objectidentifiers to Types
The sentence O ke T
is read Under the assumpion that vaiables have the types given by O, it is
provable that the expression e has the type
0(x) =T

X

10/29/18

Implementing Type Checking

0,M,Crel:int 0,M,C+e2:Int
T, M.CF el T el

TypeCheck(Environment, el + e2) = {
T1 = TypeCheck(Environment, el);
T2 = TypeCheck(Environment, e2);
Check T1 ==T2 ==Int;

return Int; }

Bindin g Time

When are bindings created and destroyed?

Binding Time

When aname is connected to an object

Bound when Examples

language designed if else

language implemented datatype widths

Program writen foobar

compiled static addresses,code
linked relatve addresses shared
loaded objects

run heap-allocated objects

Binding Time and Efficiency

Earlier binding time = more efiiciency, less flexibility

Compiled code more eficient than interpreted because
most decisions about what to execute made beforehand.

switch (statement) {

case add:
r=a+b;
break;

add %1, %2, %3

Binding Time and Efficiency

Dynamic method dispatch in OO languages:
1 Box : Shy
RIS o) { .3

class Circle : Shape {
public voiddawQ { ...}

Shape s;
s.dawQ; /* Bound at run time */

Binding Time and Efficiency

Interpreters better if language hasthe ability to create new
programs on-the-fly.

Example: Ousterhouts Tcllanguage.

Scripting language originally interpreted, later
byte-compiled.

Everything’s astring.

set al
set b2
pus "$a + $b = [epr $a + $b]"

10/29/18

Static Semantic Analysis

Static Semantic Analysis

Lexicalanalysis:Each token is valid?

if i 3"This" /% valid Java tokens */
How do we validate names, scope,and types? #a1123 7* ot a token */ J

Syntactic analysis:Tokens appear in the correctorder?

for (i =1 ;i <5; i++)3+ "foo"; /* valid Java syntax */
for break) /* invalid syntax */

Semantic analysis:Names used correctly? Types consistent?

int v =42+13; valid
return f +f(3); /* invalid

/* valid in Java (if v is new) */
*] l

How To Check Expressions: Depth-first AST Walk
What To Check

Checking function: environment - node - type

Examples from Java:

Verify names are defined and are of the right type. i = 5] 8 & ey j

inti =5; - +

inta =z /% Error: cawot find sybol */ /' \ 7 \

int b=i[3]; /* Error: array required, but int found */ 1 5 1 "Hello"

Verify the type of each expressionis consistent.

intj =i + 5% check(-) check(+)

int k =3(4+2)"heuo"; ;: Ermr: iknc_arpatlble :ﬁs *';/ check(1) =int check(1) =int

int | = ki H rrot is not a me =i " " = N

if C'Hello™ return 5; /* Error: incompatible types */ check(8)=int check(*Hello") =string
String s = "Hello"; Success:int-int =int FAIL: Can't add int and string

int m= s; /% Error: incopatible types */

Ask yourself. ateachkind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols

Checking function: environment - node - type A Static Semantic Checking Function
1+a)
4 A big function: “check: ast > sast”
1/ \a Converts a raw AST to a “semantically checked AST”

Names and types resolved
check(+)
check(1) =int
check(a) =int
Success:int+ int =int

AST SAST
type expression = type expr_detail =
IntConst of int IntConst of int
| Id of string | Id of variable_decl
| Call of string * expression list | Call of function_decl * expression list
| . | .type expressio expr_detail * Typet

The key operation: determining the type of asymbol when
it is encountered.

The environment provides a “symbol table” that holds
informaton about eachin-scopesymbol.

10/29/18

The Type o f Types

Need an OCaml type to representthe type of something in your
language.

An example for a language with integer, structures, arrays, and
exceptions:

type t = (cant call it "type" since thats reseved)
Void
| Int
| Struct of string *((string * t) amy) (name, fields *)
| Array of t *int. (type, size *)
|

Exception of string

Translation Environments

Whether an expression/statementfu nction is correct
depends on its context Represent this as an object with
named fields since youwill invariably haveto extend it

An environment type for aC-like language:

type transiation_environment ={

scope : symbol_table; (* symbol table for vars *)

return_type : Types.t; (* Function’s return type *)
in_switch : bool; (* if we are in a switch stmt *)
case_labels : Big_int.big_int list ref; (* knonn case labels *)
break_label :label option; (* when break makes sense *)

continue_label : label option; (* when continue makes sense *)
exception_scope : exception_scope; (* sym tab for exceptions *)
labels :labellist ref; (* ldbels on statements *)
forward_gotos : label list ref; (* forward goto destinations *)

A SymbolTable

Basic operation is string - type. Map or hashcould do this,
but alist isfine.
e symbol_tablo =

{
parént : symbol_table option;
variables : variable decllist

}
let rec find_variable (scope: symbol_table) name =
try
List.find (nGs, _, _,) > s = name) scope.variables
with Not_found

match scope.parenl with

Some(parent) -> find_variable parentname
| _-> raise Notfound

Checking Expressions: Literals and Identifiers

(* Information cbout where we dre *)
type translation_environment ={
scope : symbol_table;

let rec exprenv=function

(* An integer constant: convert and return Int type *)
Ast.IntConst(v) -> Sast.IntConst(v), Types .Int

(* An identifier: verify it is in scope and retum its type *)
Ast.ld(vname) >
let vdecl =tr

find_variable env.scopevname (* locate a varicble by name *)
with Not found ->

raise (Emo("undeclared identifier " Avname))
in
let (, typ) =vdecl in (* get the varidble’s type *)
Sast.ld(vdecl), typ

Checking Expressions: Binary Operators

(* let rec epr env = function *)

| A.BinOp(et, op, €2) -
let of = expr envel (* Check left and right children *)
and 2 = expr enve2in

let _, t

1 1 (* Get the type of each child *)
and _, t2

= e
=e2in
if op < Ast.Equal 8 op < Ast.NotEqual then
* Most operators require both left and right to be integer *)
grequwe mteger:;q\.eft operand nust be integer";
require_integer e2"Right operand must be integer")
else
if not (weak_eq type t1 t2) then
(* Equality operators just require types to be "close" *)
error ("Type mismatch 1in comparison: left is " A
Printer.string of sast type t1 A o r\g'vt is \"™ A
Printer.string of sast type t2 A "™\""
) loc;

Checking Statements: Expressions, If

Sast.BinOp(el, _op, e2), Types.Int (* Success: result is int

let rec stmt env=function

(* Expression statement: just check the expression *)
Ast ion(e) -> Sast.Expression(expr env o)

(* If statement: verify the predicate 1is integer *)
I Ast.IfCe, s1, s2) =

let e = check expr env e in (* Check the predicate *)
require_infeger e "Predicate of if must be integer";

Sast.IfCe, stmtenvst, stmt envs2) (* Check then, else *)

10/29/18

Checking Statements: Declarations

(* let rec stmt env = function *)

| A.Local(vdec) -
let decl, (init,) =check_local vdecl (* already declared? *)
in
(* side-effect: add varidble to the enviromment *)
env.scope.S.variables <- decl ::env.scope.S.varables;

init (* initidlization statements, if any *)

Checking Statements: Blocks

(* let rec stmt env = function *)

| A.Block(sl) ->

(* New scopes: parent is the existing scope, start out empty *)
let scope’ = { S.paent = Some(env.scope); S .variables = [}
and exceptions’

{ excep parent = Some(env.exception_scope); exceptions=[]}
in
(* New enviroment: same, but with new symol tables *)
let env’ ={ env with scope= scope’;

exception scope = exceptions’ }in

(* (heck dll the statements 1in the block *)
let s/ =List.map (fun s ->stmt en’ s) sl in
scope’.S.variables <-

List.rev scope’.S.vanables; (* side-effect *)
Sast.Block(scope’ s/1) (* Success: return block with symbols *)

