Programming Languages & Translators

GLOBAL OPTIMIZATION

Baishakhi Ray

Fall 2019

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin m




Other Global Optimization:

= Constant Propagation

Dead-code elimination

Liveness analysis

Common subexpression elimination

Loop optimization



Local Optimization

= Recall the simple basic-block optimizations

= Constant propagation
= Dead code elimination

X:=3 X:=3
Y=Z2"W ﬁ Y=Z2"W ﬁ
Q=X+Y Q=3+Y

o <

w N

*

< =



Global Optimization

= These optimizations can be extended to an entire control-flow graph




Global Optimization

= These optimizations can be extended to an entire control-flow graph




Correctness

« How do we know it is OK to globally propagate constants?

= There are situations where it is incorrect:




Correctness (cont..)

To replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is

X.=k**

= The correctness condition is not trivial to check
= “All paths” includes paths around loops and through branches of conditionals

= Checking the condition requires global analysis
= An analysis of the entire control-flow graph



Global Analysis

= Global optimization tasks share several traits:

= The optimization depends on knowing a property X at a particular
point in program execution

= Proving X at any point requires knowledge of the entire program

= It is OK to be conservative. If the optimization requires X to be true,
then want to know either

= X is definitely true
= Don’t know if X is true
= |t is always safe to say “don’t know”



Global Analysis (cont..)

= Global dataflow analysis is a standard technique for solving problems
with these characteristics

= Global constant propagation is one example of an optimization that
requires global dataflow analysis



Global Constant Propagation

= Global constant propagation can be performed at any point where ** holds

= Consider the case of computing ** for a single variable X at all program points



Global Constant Propagation (Cont.)

= To make the problem precise, we associate one of the following values
with X at every program point

value Interpretation

1 (“bottom”) This statement never

executes
C X = constant ¢
T (“top”) X is not a constant



Example




Using the Information

= Given global constant information, it is easy to perform the optimization
= Simply inspect the x = ? associated with a statement using x
= If X is constant at that point replace that use of x by the constant

= But how do we compute the properties x = ?



Using the Information

= The idea is to “push” or “transfer” information from one statement to the
next

= For each statement s, we compute information about the value of x
immediately before and after s

C(s,x,in) = value of x before s
C(s,x,out) = value of x after s



Transfer Functions

= Define a transfer function that transfers information one statement to
another

= In the following rules, let statement s have immediate predecessor
statements p,,...,p,



Rule 1

if C(p,, X, out) =T for any i, then C(s, x, in) =T



Rule 2

X=C X="? x=d X="7

C(p;, x, out) =c & C(p;, X, out) =d & d <c
then C(s, x,in) =T



Rule 3

if C(p,, x, out) =c or L for all i,
then C(s, x,in) =c



Rule 4

if C(p;, x, out) = L for all i,
then C(s, x, in) = L



= Rules 1-4 relate the out of one statement to the in of the next
statement

= Now we need rules relating the in of a statement to the out of the
same statement



Rule 5

C(s, x, out) = L
if C(s, x, in) = L



Rule 6

C(x :=c, x, out) = c if c is a constant



Rule 7




Rule 8

C(y :=...,x,out)=C(y := ..., x,in)if x>y



Algorithm

1. For every entry s to the program, set C(s, x, in) =T’
2. SetC(s, x, in) = C(s, x, out) = L everywhere else

3. Repeat until all points satisfy 1-8:
= Pick s not satisfying 1-8 and update using the appropriate rule

= Ordering:

= We can simplify the presentation of the analysis by ordering the
values L <c<T



Common subexpression elimination

= Example:
a=b+c a=b+c
c=b+c = c:=a
d=b+c d=b+c

= Example in array index calculations
» c[i+1] ;= afi+1] + b[i+1]
= During address computation, i+1 should be reused
= Not visible in high level code, but in intermediate code



Code Elimination

= Unreachable code elimination
= Construct the control flow graph
= Unreachable code block will not have an incoming edge
= After constant propagation/folding, unreachable branches can be eliminated

= Dead code elimination
= |neffective statements

» X=y+1 (immediately redefined, eliminate!)
m Y= 5 = y .= 5
= X=2%2 X =2%z

= Avariable is dead if it is never used after last definition
= Eliminate assignments to dead variables

= Need to do data flow analysis to find dead variables



Function Optimization

= Function inlining
= Replace a function call with the body of the function
= Save a lot of copying of the parameters, return address, etc.

= Function cloning
= Create specialized code for a function for different calling parameters



Loop Optimization

= Loop optimization
= Consumes 90% of the execution time
=> a larger payoff to optimize the code within a loop

= Techniques
= Loop invariant detection and code motion
Induction variable elimination
Strength reduction in loops
Loop unrolling
Loop peeling
Loop fusion



Loop Optimization

= Loop invariant detection
= |f the result of a statement or expression does not change within a loop, and it has no

external side-effect
= Computation can be moved to outside of the loop

= Example
for (i=0; i<n; i++) a[i] := a[i] + x/y;

= Three address code
for (i=0; i<n; i++) { c := x/y; a[i] := a[i] + ¢; }
= C = X/y;
for (i=0; i<n; i++) a[i] := a[i] + c;



Loop Optimization

= Code Motion
= Reduce frequency with which computation performed
= [f it will always produce same result
= Especially moving code out of loop




Loop Optimization

= Strength reduction in loops
= Replace costly operation with simpler one

= Shift, add instead of multiply or divide
lo*x —=> X << 4

= Depends on cost of multiply or divide instruction
= Recognize sequence of products




Loop Optimization

= Strength reduction in loops
= Replace costly operation with simpler one

= Shift, add instead of multiply or divide
lo*x —=> X << 4

= Depends on cost of multiply or divide instruction
= Recognize sequence of products




Loop Optimization

= Induction variable elimination

= |f there are multiple induction variables in a loop, can eliminate the ones which are used
only in the test condition

= Example
s :=0; for (i=0; i<n; i++) {s:=4 *i; ...} --iis notreferenced in loop
=5:=0; e:=4"n;while (s<e){s:=s+4;}

—— 1 1s not referenced 1n
loop




Code Optimization Techniques

= Loop unrolling
= Execute loop body multiple times at each iteration

= Get rid of the conditional branches, if possible
= Allow optimization to cross multiple iterations of the loop
= Especially for parallel instruction execution

= Space time tradeoff
» [ncrease in code size, reduce some instructions

= Loop peeling
= Similar to unrolling
= But unroll the first and/or last few iterations



Loop Optimization

= Loop fusion
= Example
fori=1 to N do
Afi] = BJ[i] + 1
endfor
fori=1 to N do
Cli]=A[i]/ 2
endfor
fori=1 to N do
D[i] =1/ C[i+1]
endfor

Before Loop Fusion

for 1=1 to N do
A[i]=B[i] + 1
Cli]=A[1]/2
D[i]=1/
C[i+1]
endfor



Loop Optimization

= Loop fusion

- Exam.ple for i=1 to N do
for i=1 to N.do | A[i] = B[i] + 1
AJi] = BJi] + 1 C[i] = A[i]/ 2
enafor DI[i] = 1 /C[i+1]
fori=1to N do endfor
Cli] =A[i]/2 A
endfor
fori=1to N do Is this correct?
DI[i] = 1 / CJ[i+1] Actually, cannot fuse
endfor the third loop

Before Loop Fusion



Limitations of Compiler Optimization

» Operate Under Fundamental Constraint
= Must not cause any change in program behavior under any possible condition

= Often prevents it from making optimizations when would only affect behavior under
pathological conditions.

Behavior that may be obvious to the programmer can be obfuscated by languages and
coding styles

» e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within procedures
= whole-program analysis is too expensive in most cases

Most analysis is based only on static information
= compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative



