9/9/19

Programming Languages & Translators

INTRODUCTION TO COMPILER

Baishakhi Ray
Fall 2019

These slides are motivated from Prof. Calivin Lin, UT Austin m

What is a Compiler?

Input

1

Source Program —— Compiler = = Target Program

Output

Source Program ——!

Input Interpreter > Output

9/9/19

A Hybrid Compiler

Source Program

|

Translator

Intermediate Program ——
Interpreter

Input =———>

—> Output

A language processing system

Source Program

Preprocessor

Modified Source|Program
Compiler

Target Assembly|Program

Assembler
Relocatablg Machine Code

Library files Linker/Loader
Relocatable object files

Target
Machine Code

9/9/19

Structure of

a Typical Compiler

Analysis Phase
/ -

Token stream

|

I

| \ 4

I Syntactic Analysis
I

I

[

[

\

Syntax trees

A 4
Semantic Analysis

Character stream

Lexical Analysis

Interpreter

\

R

\ 4

| R

Code Generation

e e o o s e e o

Synthesis Phase

Input to Compiler

Character stream

Lexical Analysis

Token stream
Syntactic Analysis
Syntax trees
Semantic Analysis

Intermediate Code
Generation

Code Generation

Syntax trees

Interpreter

Target Language

fori=1to 10 do

===l

Boli=11t010doal [=baite

9/9/19

Lexical Analysis

Break character stream into tokens (“words”)

fori=1to 10 do

Al

Character stream

Intermediate Code
Generation

Lexical Analysis

Token stream
Syntactic Analysis
Syntax trees
Semantic Analysis

Syntax trees
Interpreter

Compiler Data Structure

= Symbol Tables
= Compile-time data structures
* Hold names, type information, and scope information for variables

= Scopes
= A name space
e.g., In Pascal, each procedure creates a new scope
e.g., In C, each set of curly braces defines a new scope
= Can create a separate symbol table for each scope

9/9/19

Lexical Analysis

Break character stream into tokens (“words”)

Character stream

Intermediate Code

Lexical Analysis Generation

Token stream

Syntactic Analysis
Syntax trees

Semantic Analysis

Code Generation
Syntax trees

Interpreter Target Language

for id(i) <=> number(1) to number(10) do
id@) <P id@ <> <=> id(x) <*> number(5) <>

fori=1to 10 do

B

Symbol Table

Syntactic Analysis (Parsing)

Impose Structure to Token Stream

Character stream

Intermediate Code

Lexical Analysis Generation

Token stream

Syntactic Analysis
Syntax trees

Semantic Analysis

Code Generation

Syntax trees

Interpreter Target Language

In a typical syntax tree, intermediate nodes represent operations and

Leaf node represent the arguments of the operations.

fori=1to 10 do

=5y

9/9/19

Semantic Analysis

Determine whether source is meaningful

fori=1to 10 do

AR B
Character stream a[|] =X 5,
Intermediate Code
Generation

Lexical Analysis
Token stream

= Check for semantic errors

= Check for type errors

= Gather type information for subsequent stages
= Relate variable uses to their declarations

Syntactic Analysis
Syntax trees

RENERAEISS Code Generation

Syntax trees

Interpreter Target Language

Usage of Symbol Tables

» For each variable declaration:
= Check for symbol table entry
= Add new entry (parsing)
= add type info (semantic analysis)

» For each variable use:
= Check symbol table entry (semantic analysis)

Intermediate Code Generation

Transform AST into low-level intermediate representation (IR)

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis
Syntax trees

Interpreter

Intermediate Code
Generation

Code Generation

Target Language

Simplifies the IR

« Removes high-level control structures:
- for, while, do, switch
+ Removes high-level data structures:
- arrays, structs, unions, enums

Intermediate Code Generation

Transform AST into low-level intermediate representation (IR)

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis

Syntax trees
Interpreter

Intermediate Code
Generation

Code Generation

Target Language

One possible result is assembly-like code

Semantic lowering

Control-flow expressed in terms of “gotos”
Each expression is very simple
(three-address code)

eg,x:=a*b*c

I

t:=a*b
x:=t*c

9/9/19

Intermediate Code Generation

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis

Intermediate Code
Generation

Code Generation

Syntax trees
Interpreter

Target Language

fori=1to 10 do

ISl

Optimization

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis

Intermediate Code
Generation

Code Generation

Syntax trees
Interpreter

Target Language

Mostly machine independent optimization
Phase aims to generate better code.

Better can be

- Faster

« Shorter

« Energy efficient

9/9/19

Optimization

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis

Syntax trees
Interpreter

Generation

Code Generation

Target Language

Intermediate Code

fori=1to 10 do

ISl

Low Level Code Generation

Character stream

Lexical Analysis
Token stream

Syntactic Analysis
Syntax trees
Semantic Analysis

Syntax trees
Interpreter

Intermediate Code
Generation

Code Generation

Target Language

Register Transfer Language (RTL)

- Linear representation

- Typically language-independent

- Nearly corresponds to machine instructions

Example operations

« Assignment X :=y

« Unaryopx:=opy

« Binaryopx:=yopz

« Callx:=f0
Cbranch if (x==3) goto L
Address of p =&y

+ Load x := *(p+4)

+ Store *(p+4) ==y

9/9/19

Why studying compiler?

Isn’t it a solved problem?

Machines keep changing
= New features present new problems (e.g., MMX, I1A64, trace caches)
= Changing costs lead to different concerns

Languages keep changing
= Wacky ideas (e.g., OOP and GC) have gone mainstream

Applications keep changing
= |nteractive, real-time, mobile

Why studying compiler?

Values keep changing

We used to just care about run-time performance
Now?

Compile-time performance

Code size

Correctness

Energy consumption

Security

Fault tolerance

10

9/9/19

Value added compilation

* The more we rely on software, the more we demand more of it

= Compilers can help- treat code as data
= Analyze the code

= Correctness

= Security

Correctness and Security

= Can we check whether pointers and addresses are valid?

= Can we detect when untrusted code accesses a sensitive part of a system?
= Can we detect whether locks are used properly?

= Can we use compilers to certify that code is correct?

= Can we use compilers to verify that a given compiler transformation is correct?

11

9/9/19

Value-added Compilation

* The more we rely on software, the more we demand more of it

= Compilers can help- treat code as data
= Analyze the code

= Correctness = Software testing

= Security = Reverse engineering
= Reliability = Program obfuscation
= Program understanding = Code compaction

Program evolution Energy efficiency

Computation important s understanding computation important

Why studying compiler?

= Compilers are a fundamental building block of modern systems

= We need to understand their power and limitations
= Computer architects
» Language designers
= Software engineers
= OS/Runtime system researchers
= Security researchers
* Formal methods researchers (model checking, automated theorem proving)

12

