Programming Languages & Translators

PARSING

Baishakhi Ray

Fall 2019

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) m

Languages and Automata

= Formal languages are very important in CS
= Especially in programming languages

= Regular Languages
= Weakest formal languages that are widely used
= Many applications

= Many Languages are not regular

Automata that accept odd numbers of 1

How many 1s it has accepted?

- Only solution is duplicate state

Automata do not have any memory

Intro to Parsing

= Regular Languages

= Weakest formal languages that are widely used

= Many applications

= Consider the language {()il i > 0}

= (), (()), ((()))
= (1+2)*3)

= Nesting structures
« if .. if.. else.. else..

—_—

_ Regular languages

cannot handle well

Intro to Parsing

= Input: if(x==y) 1 else 2;

= Parser Input (Lexical Input):

KEY(IF) ‘(" ID(x) OP(‘=="))’ INT(1) KEY(ELSE) INT(2) ‘;

= Parser Output IF-THEN-ELSE

— /T

N /: N
D ID INT INT

Intro to Parsing

Character stream

= Nor every strings of tokens are

I Lexical Analysis : valid
I
| 'oken stream I = Parser must distinguish between
| I valid and invalid token strings.
‘ Parser]
O _/
Syntax trees
g = We need
Semantic Analysis = A Language: to describe valid string
= A method: to distinguish valid from
invalid.

Syntax trees

Code Generation

Context Free Grammar

= A CFG consists of
= A set of terminal T
= A set of non-terminal N
= A start symbol S (S € N)
= A set of production rules

n X->Y, .Yy
« XEN
Y. e {N,T, ¢}
s EX:S->(S) 1€
= N={S}

= T={(,), &}

Context Free Grammar

1. Begin with a string with only the start symbol S

2. Replace a non-terminal X with in the string by the RHS of some production rule:

X->Y,....Y

n

3. Repeat 2 again and again until there are no non-terminals

Ay = 0] = 0 = 03... > O

%k
ayg— a,,n >0

Context Free Grammar

= Let G be a CFG with start symbol S. Then the language L(G) of G is:

*
a,...a;...a,|Via, eTNS—>a,...q,...a,}

Context Free Grammar

= There are no rules to replace terminals.
= Once generated, terminals are permanent
= Terminals ought to be tokens of programming languages

= Context-free grammars are a natural notation for this recursive structure

CFG: Simple Arithmetic expression

E> E+E
E*E
(E)

id

Languages can be generated: id, (id), (id+1d) *id, ...

CFG: Exercise

S = aXa
X — ¢e|bY

Y - e|cXc

Some Valid Strings are: aba, abcca, ...

Derivation

= A derivation is a sequence of production
= S>> >

= A derivation can be drawn as a tree
» Start symbol is tree’s root
« For a production X ->Y,....Y_, add children Y,....Y, to node X

= Grammar
« E>E+EIE*EI(E)Iid

= String
= id*id +id

= Derivation

E->>E+E

>ETE+E Parse

S—
Tree

>id*E+E
->id*id+ E

->id *id + id

Parse Tree

= A parse tree has
= Terminals at the leaves
= Non-terminals at the interior nodes

= An in-order traversal of the leaves is the original input

= The parse tree shows the association of operations, the input string does not

Parse Tree

» Left-most derivation = Right-most derivation
= At each step, replace the left-most non- = At each step, replace the right-most non-
terminal terminal
E->E+E E->>E+E
>E*E+E ->E +id
>id*E+E >E*E +id
>id*id+E ->E *id + id
->id *id +id ->id *id +id

Note that, right-most and left-most derivations have the same parse tree

Ambiguity

= Grammar
« E>E+EIE*EI(E)Iid

= String
= id*id +id

Ambiguity

= A grammar is ambiguous if it has more than one parse tree for a string

= There are more than one right-most or left-most derivation for some
string

= Ambiguity is bad
= Leaves meaning for some programs ill-defined

Example of Ambiguous Grammar

= S->SSlalb

Resolving Ambiguity

= Most direct way to rewrite the grammar unambiguously

id*id+ id

E=E+E|E
E =id*E'|id|(E)*E'|(E)

Resolving Ambiguity

= [mpossible to convert ambiguous to unambiguous grammar automatically

= |[nstead of rewriting
» Use ambiguous grammar
= Along with disambiguating rules
= Eg, precedence and associativity rules
= Enforces precedence of * over +

= associativity: %left +

Abstract Syntax Trees

= A parser traces the derivation of a sequence of tokens

= But the rest of the compiler needs a structural representation of the
program

= Abstract Syntax Trees
= Like parse trees but ignore some details
= Abbreviated as AST

Abstract Syntax Trees

= Grammar
«E>intl(E)IE+E

= String
=5+ (2+3)

= After lexical analysis
n Int<5> '+ (C Int<2> '+ Int<3>)’

Abstract Syntax Trees: 5+ (2 + 3)

Parse Trees

==

.

Abstract Syntax Trees: 5+ (2 + 3)

Parse Trees

=

 Have too much information
 Parentheses
« Single-successor nodes

.

Abstract Syntax Trees: 5+ (2 + 3)

Parse Trees AST
* Have too much information » ASTs capture the nesting structure

. P_arentheses « But abstracts from the concrete syntax
» Single-successor nodes « More compact and easier to use

Error Handling

= Purpose of the compiler is
= To detect non-valid programs
= To translate the valid ones

= Many kinds of possible errors (e.g., in C)

Error Kind Detected by

Lexical U Lexer
Syntax oo X*%... Parser
Semantic ... intx; y =x(3);... Type Checker

Correctness your program tester/user

Error Handling

= Error Handler should
= Discover errors accurately and quickly
= Recover from an error quickly
= Not slow down compilation of valid code

= Types of Error Handling
= Panic mode
= Error productions
= Automatic local or global correction

Panic Mode Error Handling

= Panic mode is simplest and most popular method

= \WWhen an error is detected

= Discard tokens until one with a clear role is found
= Continue from there

= Typically looks for “synchronizing” tokens
= Typically the statement of expression terminators

Panic Mode Error Handling

= Example:
= (1++2)+3

= Panic-mode recovery:
= Skip ahead to the next integer and then continue

= Bison: use the special terminal error to describe how much input to skip
sE>intlE+EI(E)!lerrorintl| (error)

\ A J
[[

Normal mode Error mode

Error Productions

= Specify known common mistakes in the grammar

= Example:
= Write 5x instead of 5 * x
= Add productionrule E->..IEE

= Disadvantages
= complicates the grammar

Error Corrections

= |dea: find a correct “nearby” program
= Try token insertions and deletions (goal: minimize edit distance)
= Exhaustive search

= Disadvantages
= Hard to implement
= Slows down parsing of correct programs
= “Nearby” is not necessarily “the intended” program

Error Corrections

= Past
= Slow recompilation cycle (even once a day)
= Find as many errors in once cycle as possible

= Disadvantages
= Quick recompilation cycle
= Users tend to correct one error/cycle
= Complex error recovery is less compelling

Parsing algorithm: Recursive Descent Parsing

= The parse tree is constructed
= From the top
= From left to right

= Terminals are seen in order of appearance in the token stream

Parsing algorithm: Recursive Descent Parsing

= Grammar:
sE>TIT+E
s T->intlint*TI(E)

= Token Stream: (int<5>)

= Start with top level non-terminal E
= Try the rules for E in order

Recursive Descent Parsing Example

E>TIT+E
T->intlint*TI(E)

mismatch: int does not match arrowhead (
backtrack

S

int

(int<5>)

Recursive Descent Parsing Example

E>TIT+E
T->intlint*TI(E)

E

‘ backtrack
-
’ T

int

(int<5>)

Recursive Descent Parsing Example

E>TIT+E
T->intlint*TI(E)

Match! Advance input

ml—l om

()

(int<5>)

Recursive Descent Parsing Example

E>TIT+E
T->intlint*TI(E)

(int<5>)
) int

— —m l—l —m

Match! Advance input

Recursive Descent Parsing Example

E>TIT+E
T->intlint*TI(E)

(int<5>)
t int

— —m l—l —m

Match! Advance input

A Recursive Descent Parser. Preliminaries

= Let TOKEN be the type of tokens
» Special tokens INT, OPEN, CLOSE, PLUS, TIMES -

= Let the global next point to the next token

A (Limited) Recursive Descent Parser

= Define boolean functions that check the token string for a match of
= A given token terminal
bool term (TOKEN tok) { return *next++ == tok; }

= The nth production of S:
bool S (){ ... }

= Try all productions of S:
bool S(){ ... }

A (Limited) Recursive Descent Parser

= For production E — T

bool E,() { return T(); }

» For productionE = T+ E
bool E2() { return T() && term(PLUS) && E(); }

= For all productions of E (with backtracking)
bool E() {

TOKEN *save = next;
return (next = save, E,()) Il (next = save, E,());

}

A (Limited) Recursive Descent Parser (4)

= Functions for non-terminal T
bool T,() { return term(INT); }

bool T,() { return term(INT) && term(TIMES) && T(); }
bool T,() { return term(OPEN) && E() && term(CLOSE); }

bool T() {
TOKEN *save = next;
return (next = save, T,())

Il (next = save, T,())
Il (next = save, T,());

Recursive Descent Parsing

= To start the parser
= Initialize next to point to first token
= Invoke E() * Notice how this simulates the example parse °

Example

Grammar:
E->TIT+E
T—=intlint*TI(E)
Input: (int)
Code:
bool term(TOKEN tok) { return *next++ == tok; } E
bool E () { return T(); }
bool E,() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next; T
return (next = save, E ()) || (next = save, E,()); }
bool T,() { return term(INT); } /////1
bool T,() { return term(INT) && term(TIMES) && T(); } (E
bool T,() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
return (next = save, T,())
|| (next = save, T,()) T
|| (next = save, T,()); } /

int

When Recursive Descent Does Not Work

save, E,()); }

Grammar:
E->TIT+E
T—=intlint*TI(E)
Input: int * int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E () { return T(); }
bool E,() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
return (next = save, E ()) || (next =
bool T,() { return term(INT); }
bool T,() { return term(INT) && term(TIMES) && T(); }
bool T,() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;

return (next = save, T, ())
|| (next = save, T,())
|| (next = save, T,()); }

Recursive Descent Parsing: Limitation

= |f production for non-terminal X succeeds
= Cannot backtrack to try different production for X later

= General recursive descent algorithms support such full backtracking
= Can implement any grammar

= Presented RDA is not general
= But easy to implement

= Sufficient for grammars where for any non-terminal at most one production can
succeed

= The grammar can be rewritten to work with the presented algorithm
= By left factoring

Left Factoring

A->afl | af?2

= The input begins with a nonempty string derived from a, we do not know whether to
expand Ato afil or af2.

= We can defer the decision by expanding Ato aA'.

= Then, after seeing the input derived from a, we expand A'to f1 or f2 (left-factored)

= The original productions become:

A->aA' A -> pl11[2

When Recursive Descent Does Not Work

= Consider a production S = S a
bool S,() { return S() && term(a); }

bool S() { return S,(); }

= S() goes into an infinite loop
= A left-recursive grammar has a non-terminal S
S —+ Sa for some a

= Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

= Consider the left-recursive grammar
S—=>Salf
= S generates all strings starting with a 3 and followed by a number of a
= Can rewrite using right-recursion
S—-BS
S = aS’le

More Elimination of Left-Recursion

= In general
S—=2Sa,l..ISa, B I...1B,

= All strings derived from S start with one of f3,,...,B,, and continue with
several instances of a,,...,q,

= Rewrite as
S—-B,SI...13,S
S—=2a,SIl...1a,S e

General Left Recursion

= The grammar
S—-Aald
A—Sf
IS also left-recursive because
S—=++Sfa

= This left-recursion can also be eliminated

Summary of Recursive Descent

= Simple and general parsing strategy
= Left-recursion must be eliminated first
= ... but that can be done automatically

= Unpopular because of backtracking
= Thought to be too inefficient

= |[n practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

= Like recursive-descent but parser can “predict” which production to use
= By looking at the next few tokens
= No backtracking

= Predictive parsers accept LL(k) grammars
= L means “left-to-right” scan of input
= L means “leftmost derivation”
= K means “predict based on k tokens of lookahead”
= In practice, LL(1) is used

LL(1) vs. Recursive Descent

= |n recursive-descent

= At each step, many choices of production to use
= Backtracking used to undo bad choices

= In LL(1)
= At each step, only one choice of production
= Thatis

= When a non-terminal A is leftmost in a derivation
= The next input symbol is t
= There is a unique production A = a to use

= Or no production to use (an error state)

= LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

= Recall the grammar
E->T+EIT
T—=intlint*"TI(E)

= Hard to predict because
= For T two productions start with int
= For E it is not clear how to predict

= WWe need to left-factor the grammar

Left-Factoring Example

= Grammar
E->T+EIT
T—intlint*TI(E)

» Factor out common prefixes of productions
E—-TX
X—=>+Ele¢
T—-(E)lintY
Y—=>*Tle

LL(1) Parsing Table Example

= Left-factored grammar
E—-TX
X—=>+Ele¢
T—=(E)lintY
Y=>*"Tle

= The LL(1) parsing table:

- next input tokens

Left-most Il ; N () S
E TX X

non- X +E € £
terminals T ity (E)

Y *T € € €

LL(1) Parsing Table Example (Cont.)

= Consider the [E, int] entry

= “When current non-terminal is E and next input is int, use production
E->TX"

= This can generate an int in the first position

» Consider the [Y,+] entry
= “When current non-terminal is Y and current token is +, get rid of Y”
= Y can be followed by + only if Y = ¢

LL(1) Parsing Tables. Errors

= Blank entries indicate error situations

= Consider the [E,*] entry

= “There is no way to derive a string starting with * from non-terminal
E!!

Using Parsing Tables

= Method similar to recursive descent, except
= For the leftmost non-terminal S
= We look at the next input token a
= And choose the production shown at [S,3]

= A stack records frontier of parse tree
= Non-terminals that have yet to be expanded
= Terminals that have yet to match against the input
= Top of stack = leftmost pending terminal or non-terminal

= Reject on reaching error state

= Accept on end of input & empty stack

First & Follow

= During top down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol.

» FIRST(), a is any string of grammar symbols
= A set of terminals that begin strings derived from «.

. lfa 5 ¢, then € is in FIRST(q). / 5
. if @ 5 cY, the cis in FIRST(«). - /A/ \>
= FOLLOW(A), A is a nonterminal !

= the set of terminals that can appear immediately to the right of A.
. Aset of terminals “a” such that S — aAaf for some a and f.

Constructing Parsing Tables: The Intuition

= Consider non-terminal A, production A — a, & token t
= T[A,t] = ain two cases:

o lfa—->"tf
= a can derive a t in the first position
= We say that t € First(a)

s lfA2>aanda—2"ecandS »*BAtd
= Useful if stack has A, input is t, and A cannot derive t
= In this case only option is to get rid of A (by deriving €)
= We say t € Follow(A)

Computing First Sets

= Definition

First(X) ={t1 X =" ta} u{e | X 2" €}, X can be single terminal, single non-terminal,
or string including both

= Algorithm sketch:
1. First(t) ={t}, tis terminal
2. € € First(X)
s ff X 2 €
«if X = A, ... A ,and € e First(A;) for 1 <i<n
3. First(a) ¢ First(X) if X = A, ... A, a
» € € First(A) for1 <i<n

First Sets. Example

= grammar
E—-TX
X—=+Ele
T (E)lintY
Y=>*Tle

= First sets
First(() ={(} First(E) 2 =First(T) ={int, (}

(()
First())={)} First(X) ={+, ¢}
First(int) = { int } First(Y)={" ¢}
(
(

First(+)={+}

First(*)={"}

Computing Follow Sets

= Definition:
Follow(X) ={tIS »>*"B X110}
= |Intuition:
« If X = A B then First(B) ¢ Follow(A) and
Follow(X) ¢ Follow(B)
« If B =" € then Follow(X) € Follow(A)

= |[f S is the start symbol then $ € Follow(S)

Computing Follow Sets (Cont.)

Algorithm sketch:

1. $ € Follow(S)

2. First(pB) - {e} ¢ Follow(X)
= For each production A= a X f3

3. Follow(A) € Follow(X)
= For each production A = a X 8 where € € First()

Follow Sets. Example

= Recall the grammar
E-TX X—=+Ele
T—-(E)lintY Y—>"Tle

= Follow sets

Follow(+) = { int, (}
Follow(() = { int, (}
Follow(*) = { int, (}
Follow()) = {+,) , $}
Follow(int) = {*, +,) , S}.

Follow(
Follow(
Follow(
Follow(

S S S S

{), S}

{+,
{+,

{$,

) + S}
) + S}
) }

Constructing LL(1) Parsing Tables

= Construct a parsing table T for CFG G

= For each production A = ain G do:
= For each terminal t € First(a) do

= T[A, t] =a
« If € € First(a), for each t € Follow(A) do
« T[A, t] =a

= |f € € First(a) and $ € Follow(A) do
= T[A, $] = a

LL(1) Parsing Table Example

Rules:

= Left-factored grammar _ _
For each production A = a in G do:

E=TX For each terminal t € First(a) do
X—=>+Ele¢ T[At]=0.
T—-(E)lintY If € € First(a), for each t € Follow(A) do
Y=>*Tle T[A, t]=a
_ If € € First(a) and $ € Follow(A) do
= The LL(1) parsing table: TIA, $] = a
- next input tokens
Left-most int " () b
E X X
fieln= X +E € €
terminals T ity (E)
Y *T € € €

Notes on LL(1) Parsing Tables

= |[f any entry is multiply defined then G is not LL(1) [Eg: S->Salb]
= |f G is ambiguous
= If G is left recursive
» |f G is not left-factored
= other: e.g., LL(2)

= Most programming language CFGs are not LL(1)
= too weak
= However they build on these basic ideas

Bottom-Up Parsing

Bottom-up parsing is more general than (deterministic) top-down parsing
= just as efficient
= Builds on ideas in top-down parsing

Bottom-up parsers don’t need left-factored grammars

Revert to the “natural” grammar for our example:
E-T+EIT
T—int*Tlintl (E) -

Consider the string: int * int + int

Bottom-Up Parsing

= Revert to the “natural” grammar for our example:
E-T+EIT
T—int*Tlint! (E)

= Consider the string: int * int + int

= Bottom-up parsing reduces a string to the start symbol by inverting productions:

int * int + int T » int

int * T + int T » int * T
T + int T » int

T + T E > T

T + E E > T + E

E

Observation

= Read the productions in reverse (from bottom to top)

= This is a rightmost derivation!

int * int + int T » int

int * T + int T > int * T
T + int T » int

T + T E > T

T + E E > T + E

E

Bottom-Up Parsing

= A bottom-up parser traces a rightmost derivation in reverse

int * int + int

int * T
T + int
T + T
T + E
E

+ int

H H 3 3 4
2B R TR TR 4

int
int * T
int
T
T + E

Nt .

int

int

A trivial Bottom-Up Parsing Algorithm

Let | = input string
repeat
pick a non-empty substring 3 of |
where X— 3 is a production
if no such 3, backtrack
replace one B by X in |
until | = “S” (the start symbol) or all possibilities are exhausted

Bottom-Up Parsing

= Split string into two substrings
= Right substring is not examined yet by parsing (a string of

E->T | T+ E terminals)
T > int | int * T = Left substring has terminals and non-terminals
- = The dividing point is marked by a |
= The | is not part of the string
T +E . S .
« Initially, all input is unexamined | x,x, . . . X,
T+T
T +int E
int* T +int /\
int * int + int T E
Expand Here Terminals Only
T T

Nt « int + int

Where Do Reductions Happen?

= Right-most derivation has an interesting consequence:
» Let aBw be a step of a bottom-up parse
= Assume the next reduction is by X— 3
= Then w is a string of terminals

= Why? Because aXw — aPw is a step in a rightmost derivation

Shift-Reduce Parsing

= Bottom-up parsing uses only two kinds of actions:
= Shift
= Reduce

= Shift: Move | one place to the right
= Shifts a terminal to the left string ABClxyz = ABCxlyz

= Reduce: Apply an inverse production at the right end of the left string
= |[f A — Xy is a production, then Cbxylijk = CbAlijk

The Example with Reductions Only

int * int | + int reduce T -» int

int * T | + int reduce T » int * T
T + int | reduce T -» int

T + T | reduce E » T

T + E | reduce E » T + E

E |

An Example with Shift-Reduce Parsing

int * int + int

int * int + int
int * int + int
int * int + int
int*T + int
T +int

T+ int
T + int
T+ T
T+ E

E

stack

input

shift
shift
shift
reduce
reduce

shift

shift
reduce

reduce
reduce

Nt .

int

int

The Stack

= Left string can be implemented by a stack
= Top of the stack is the |

= Shift pushes a terminal on the stack

= Reduce

= pops 0 or more symbols off of the stack (production rhs)
= pushes a nonterminal on the stack (production I|hs)

Conflicts

= [n a given state, more than one action (shift or reduce) may lead to a valid parse
= [f it is legal to shift or reduce, there is a shift-reduce conflict

= |f it is legal to reduce by two different productions, there is a reduce-reduce conflict.

Key Issue

= How do we decide when to shift or reduce?

= Example grammar:
E->T+EIT
T—=>int*Tlintl (E)

» Consider step int | * int + int
= We could reduce by T — int giving T | * int + int
= A fatal mistake!
= No way to reduce to the start symbol E

Handles

= [ntuition: Want to reduce only if the result can still be reduced to the start symbol.

= Assume a rightmost derivation
S =" aXw — aBw

= Then X — 3 in the position after a is a handle of aBw

= af3 is a handle of afw

Handles

= A handle is a string that can be reduced and also allows further reductions back to the
start symbol (using a particular production at a specific spot)-

= We only want to reduce at handles

In shift-reduce parsing, handles appear only at the top of the stack, never inside

Informal induction on # of reduce moves:

True initially, stack is empty

Immediately after reducing a handle
= right-most non-terminal on top of the stack

= next handle must be to right of right-most nonterminal, because this is a right-most
derivation

= Sequence of shift moves reaches next handle

Summary of Handles

= |n shift-reduce parsing, handles always appear at the top of the stack

= Handles are never to the left of the rightmost non-terminal
= Therefore, shift-reduce moves are sufficient; the | need never move left

= Bottom-up parsing algorithms are based on recognizing handles

Recognizing Handles

= There are no known efficient algorithms to recognize handles
= Solution: use heuristics to guess which stacks are handles

= On some CFGs, the heuristics always guess correctly
= For the heuristics we use here, these are the SLR grammars
= Other heuristics work for other grammars

Grammars

= AllCFGs

= Unambiguo
us CFG

« LR(K) CFG

« LALR(K)
CFG

= SLR(K)
CFGs

Viable Prefixes

= A is a viable prefix if there is an w such that alw is a state of a shift-reduce parser
= ais stack
= is rest of the inputs

= Aviable prefix does not extend past the right end of the handle
» [t's a viable prefix because it is a prefix of the handle

= As long as a parser has viable prefixes on the stack no parsing error has been
detected

= For any grammar, the set of variable prefixes is a regular language
= we can compute an automata that accepts variable prefixes

Viable Prefixes

E->T | T+ E

T » int |

T +E
T +T

int *

viable prefixes

int * T

E

T +int
T +int
int * int + int

Terminals

Nt .

int

int

Items

= An item is a production with a “.” somewhere on the rhs

= The items for T — (E) are
T — (E)
T — (.E)
T— (E)
T — (E).

= Theonlyitemfor X 2> gis X —.

» [tems are often called “LR(0) items”

Intuition

= The problem of recognizing viable prefixes is that the stack has only bits and pieces of
the rhs of productions

= |f it had a complete rhs, we could reduce

= These bits and pieces are always prefixes of rhs of productions

Example

= Consider the input (int)
= Then (E) is a state of a shift-reduce parse

» (Eis aprefixoftherhsof T — (E) -
= Will be reduced after the next shift

= [tem T — (E.) says that so far we have seen (E of this production and hope to
see)

Generalization

= The stack may have many prefixes of rhs’s
« Prefix, Prefix, . . . Prefix _, Prefix,

= Let Prefix; be a prefix of rhs of X. = a,
= Prefix; will eventually reduce to X
= The missing part of a, ; starts with X,
« i.e. there is a X, ; = Prefix,_; X, 3 for some (3

= Recursively, Prefix,,,...Prefix, eventually reduces to the missing part of a,

An Example

= Consider the string (int * int):
= (int *lint) is a state of a shift-reduce parse

= “(”is a prefix of the rhs of T — (E)

» “e”isaprefixoftherhsof E-T
= “int*is aprefixoftherhsof T = int*T

» The “stack of items”
= T (E)
= E—> T
s T2 int*. T

= Says
= We've seen “(" of T — (E)
= We'veseenecof E—>T
» We'veseenint*of T = int*T

Recognizing Viable Prefixes

= |dea: To recognize viable prefixes, we must
= Recognize a sequence of partial rhs’s of productions, where
= Each sequence can eventually reduce to part of the missing suffix of its predecessor

An NFA Recognizing Viable Prefixes

1. Add a dummy production S’ = Sto G

2. The NFA states are the items of G
= Including the extra production
= NFA takes the stack as input
= NFA(stack) -> acceptlireject

3. Foritem E = a.Xp add transition
E— aXB —=>XE — aX.f3

4. Foritem E — a.Xp and production X — y add
E—-aXB—2eX—y

5. Every state is an accepting state

6. StartstateisS' — .S

Recognizing VP

S’->E
E->T+EIT
T->Int*Tlintl(E)

NFA of Viable Prefixes

T5.(E) T (E)

S - E.

DFA of Viable Prefixes

S >.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T%.in:c

int

int

T

E-> T+E

T int.*T
T int

l*

T-> int™.T

T>.(E)
T>.int*T
T . int

>

E-> T+.E
E-> T
E->

T+E

E-> T+E.

T =2 int*T.

_—

T->
E-> T
E-> .
T-> .(BE)
T-> .
T-> .int

DFA of Viable Prefixes

= The states of the DFA are
“canonical collections of items”
or
“canonical collections of LR(0) items”

Valid Items

» [tem X — B.y is valid for a viable prefix af if
S’ =" aXw — afByw by a right-most derivation
= After parsing a3, the valid items are the possible tops of the stack of items

= An item | is valid for a viable prefix a if the DFA recognizing viable prefixes terminates
on input a in a state s containing |

= The items in s describe what the top of the item stack might be after reading input a

= An item is often valid for many prefixes
= Example: The item T — (.E) is valid for prefixes ((((((((((

LR(o) Parsing

= Assume
= stack contains a
= next input is t
= DFA on input a terminates in state s

= Reduce by X = B if
= S contains item X — 3.

= Shift if
= S contains item X — [(B.tw
= equivalent to saying s has a transition labeled t

LR(0) Conflicts

= LR(0) has a reduce/reduce conflict if:

= Any state has two reduce items:
s X2 B.and Y — w.

= LR(0) has a shift/reduce conflict if:
= Any state has a reduce item and a shift item:
s X2 B.andY = w.td

LR(0) Conflicts: Two shift-reduce conflicts

S >.E
E->.T
E->.T+E
T->.(E)
T->.int*T
T%.in:c

int

int

T
‘/\Eé T+.E -—E->E9 T+E.
E> T + E=> .1
E> T+E JE> T+E
T> .(E)
T> int*T
TS int*T TS i
T int (
l* T> (E)
— E> T
T> int~T | [T 2 int"T E> T+E
T>.6 L— /Te (E)
T int*T TS .int*T
E
T . int = € T> int

SLR

= LR = “Left-to-right scan”
= SLR =“Simple LR”

= SLR improves on LR(0) shift/reduce heuristics
= Fewer states have conflicts

SLR Parsing

= Assume
= stack contains a
= next input is t

= DFA on input a terminates in
state s

= Reduce by X — B if
= S contains item X — 3.
= t € Follow(X)

» Shift if
= S contains item X — [(B.tw

= |f there are conflicts under these rules,
the grammar is not SLR

= The rules amount to a heuristic for
detecting handles

= The SLR grammars are those where
the heuristics detect exactly the
handles

SLR Conflicts

T E

,/\Eé T+.E ——E-> T+E.
s> E E> T S+ Ny T

]/'Ee T+E T+E
E

(E)

int* T
S >.E T-=> int.”T .int
E>.T int T> int. (
E>.T+E i ‘
T . (E))
T int*T int :
T . int T2 int” Follow(E) = {*)",$} E

Follow(T) ={'+,), $}

No conflicts with SLR rules!

—

Naive SLR Parsing Algorithm

1. Let M be DFA for viable prefixes of G

2. Letlx,...x,$ be initial configuration

3. Repeat until configuration is SI$

= Let alw be current configuration

= Run M on current stack a

= |[f M rejects q, report parsing error
= Stack a is not a viable prefix

= |[f M accepts a with items |, let a be next input
» Shiftif X > B.ayel
= Reduce if X = B. € | and a € Follow(X)
= Report parsing error if neither applies

Parsing [int * int $

T E

N

‘/\Eé T+.E m—»E> T+E.
. E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T

E->.T int T-> ir]t. 3

E->.T+E .

T 2. (E)

T=2.int*T int)

P T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing [int * int $

Configuration DFA Halt State
lint * int$ 1 shift

int | *int$

Parsing int| * int $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-=> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int)
T int T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing [int * int $

Configuration DFA Halt State
lint * int$ 1 shift
int | * int$ 3 (* not in Follow(T)) shift

int * | int$

Parsing int * |int $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int _
T int T-> int*.T
T->.(E)
T>.int*T
T ->. in:[11

Parsing [int * int $

Configuration DFA Halt State

lint * int$ 1 shift
int | * int$ 3 (* not in Follow(T)) shift
int * | int$ 11 shift
int “intl$

Parsing int| * int $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-=> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int)
T int T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int

int*TI$

Parsing int * T | $

T E

N

‘/\Eé T+.E m—»E> T+E.
. E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T

E->.T int T-> ir]t. 3

E->.T+E .

T 2. (E)

T=2.int*T int)

P T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing int * T | $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-=> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int)
T int T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing int * T | $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int _
T int T-> int*.T
T->.(E)
T>.int*T
T ->. in:[11

Parsing int * T | $

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int)
T int T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int
int*TI1$ 4 ($ Follow (T)) reduce T->int*T

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int
int*TI1$ 4 ($ Follow (T)) reduce T->int*T
TI$

Parsing T |

T E

N

‘/\Eé T+.E m—»E> T+E.
. E> T 5 + NJE2 T

I/VE9 T+E SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T

E->.T int T-> ir]t. 3

E->.T+E .

T 2. (E)

T=2.int*T int)

P T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing T |

T E

N

‘/\Eé T+.E m—»E> T+E.
| E> T 5 + NJE2 T

I/VE9 = SN
E .

N
2
N2
m

SS>.E. 1 T-> int.*T
E->.T int T-> ir]t. 3
E->.T+E .
T->.(E)
T>.int*T int)
T int T-> int*.T
T->.(E)
T2>.int*T
T ->. in:t 11

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int
int*TI1$ 4 ($ Follow (T)) reduce T->int*T
TI$ 5 ($ Follow (E)) reduce E->T

Parsing [int * int $

Configuration DFA Halt State Action

lint * int$ 1 shift

int | * int$ 3 (* not in Follow(T)) shift

int * | int$ 11 shift

int “intl$ 3 ($ Follow (T)) reduce T->int
int*TI1$ 4 ($ Follow (T)) reduce T->int*T
TI$ 5 ($ Follow (E)) reduce E->T
EI$ accept

An Improvement

= Rerunning the automaton at each step is wasteful
= Most of the work is repeated

= Change stack to contain pairs (Symbol, DFA State)
= DFA State is the state of the automaton on each prefix of the stack

= For a stack (sym,, state,) ... (sym, state,)
= state, is the final state of the DFA on sym, ... sym

n

= The bottom of the stack is (any, start) where
= any is any dummy symbol
= gtart is the start state of the DFA

Goto Table

= Define goto[i,A] = j if state; =4 state,

= goto is the transition function of the DFA

Refined Parser Moves

= Shift x
= Push (a, x) on the stack

= ais current input
= x is a DFA state

= Reduce X = a
= As before

= Accept

= Error

Action Table

= For each state s, and terminal a
= If s, has item X — a.af3 and gotoli,a] =] then action[i,a] = shift j

= If s, has item X = a. and a € Follow(X) and X # S’ then actionl[i,a] = reduce X = a
= If s, has item S’ — S. then action[i,$] = accept

= Otherwise, actionli,a] = error

SLR Parsing Algorithrn

Let | = w$ be initial input
Letj=0
Let DFA state 1 have item S’ — .S
Let stack = (dummy, 1)
repeat
case action[top_state(stack),l[j]] of
shift k: push { I[j++], k)
reduce X — A:
pop |Al pairs,
push <X, goto[top_state(stack),X]>
accept: halt normally
error: halt and report error

Notes on SLR Parsing Algorithm

= Note that the algorithm uses only the DFA states and the input
= The stack symbols are never used! -
= However, we still need the symbols for semantic actions

L, R, and all that

= LR parser: “Bottom-up parser”
= L = Left-to-right scan, R = Rightmost derivation

= RR parser: R = Right-to-left scan (from end)
= nobody uses these

= LL parser: “Top-down parser”:

= | = Left-to-right scan: L = Leftmost derivation

= LR(1): LR parser that considers next token (lookahead of 1)

= LR(0): Only considers stack to decide shift/reduce

= SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton

= LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)

