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▪We have covered the front-end phases 
▪ Lexical analysis 
▪ Parsing 
▪ Semantic analysis    

▪ Next are the back-end phases
▪ Code generation 
▪ Optimization

All the compilation errors 
are caught in this phase



Run-time environments

▪ What are we trying to generate?

▪ How executable code is laid out? 

Run-time Processes
▪ Execution of a program is initially under the control of the operating system 

▪ When a program is invoked: 
▪ The OS allocates space for the program 
▪ The code is loaded into part of the space 
▪ The OS jumps to the entry point (i.e., “main”)



Memory Layout

▪ By tradition
▪  Low address at the top 
▪ High address at the bottom 
▪ Lines delimiting areas for different 

kinds of data 

▪ Simplified representation
▪ Not all memory need be contiguous 

▪ Compiler is responsible for: 
▪ Generating code 
▪ Orchestrating use of the data area
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Data Space
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Code Generation Goals 

▪ Two goals: 
▪ Correctness 
▪ Speed 

▪Most complications in code generation come from trying to be fast as 
well as correct



Assumptions about Execution 

▪ Execution is sequential; control moves from one point in a program to 
another in a well-defined order 

▪When a procedure is called, control eventually returns to the point 
immediately after the call



Activations

▪ An invocation of procedure P is an activation of P

▪  The lifetime of an activation of P is 
▪ All the steps to execute P 
▪ Including all the steps in procedures P calls 

▪ The lifetime of a variable x is the portion of execution in which x is 
defined 
▪ Lifetime is a dynamic (run-time) concept 
▪ Scope is a static concept 



▪ Assumption (2) requires that when P calls Q, then Q returns before P does 

▪ Lifetimes of procedure activations are properly nested 

▪ Activation lifetimes can be depicted as a tree 

▪ Example: 

Class Main { 

 int g() { 1 }; 

 int f() { g() }; 

 int main() { g(); f(); }; 

} 

Activation Trees 
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Example 2

Class Main { 

 int g(){1}; 

 int f(int x){ 

   if(x == 0) g();

   else f(x-1); 

 }; 

 int main() {f(3);}; 

} 



Activation Trees 

▪ The activation tree depends on run-time behavior 

▪ The activation tree may be different for every program input 

▪ Since activations are properly nested, a stack can track currently active procedures 



▪ Example: 

Class Main { 

 int g() { 1 }; 

 int f() { g() }; 

 int main() { g(); f(); }; 

} 

Activation Trees 
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▪ Example: 

Class Main { 

 int g() { 1 }; 

 int f() { g() }; 

 int main() { g(); f(); }; 

} 
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▪ Example: 

Class Main { 

 int g() { 1 }; 

 int f() { g() }; 

 int main() { g(); f(); }; 

} 
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Example 2

Class Main { 

 int g(){1}; 

 int f(int x){ 

   if(x == 0) g();

   else f(x-1); 

 }; 

 int main() {f(3);}; 

} 
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Revised Memory Layout
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Activation Records

▪ The information needed to manage one procedure activation is called 
an activation record (AR) or frame.

▪ If procedure F calls G, then G’s activation record contains a mix of info 
about F and G.
▪ F is “suspended” until G completes, at which point F resumes. 
▪ G’s AR contains information needed to resume execution of F. 
▪ G’s AR may also contain: 

▪ G’s return value (needed by F) 
▪ Actual parameters to G (supplied by F) 
▪ Space for G’s local variables



The Contents of a Typical AR for G

▪ Space for G’s return value 

▪ Actual parameters 

▪ Pointer to the previous activation record 
▪ The control link; points to AR of caller of G 

▪ Machine status prior to calling G 
▪ Contents of registers & program counter 
▪ Local variables 

▪ Other temporary values 



Example 2

Class Main { 

 int g(){1}; 

 int f(int x){ 

   if(x == 0) g();

   else f(x-1) (**); 

 }; 

 int main() {f(3); (*)}; 

} 
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Discussion

▪ The advantage of placing the return value 1st in a frame is that the caller can find it at 
a fixed offset from its own frame 

▪ There is nothing magic about this organization 
▪ Can rearrange order of frame elements 
▪ Can divide caller/callee responsibilities differently 
▪ An organization is better if it improves execution speed or simplifies code generation 

▪ Real compilers hold as much of the frame as possible in registers 
▪ Especially the method result and arguments 



The compiler must determine, at compile-time, the layout of activation records and 
generate code that correctly accesses locations in the activation record 

Thus, the AR layout and the code generator must be designed together.



i n t  foo( in t  a, i n t  b) {
i n t  c, d;  
bar(1, 2, 3);

}

From Callerb
a

!Old frame ptr.

Registers

c
d
3
2
1

Stack Ptr.

!Return add



Globals

▪ All references to a global variable point to the same object 
▪ Can’t store a global in an activation record 

▪ Globals are assigned a fixed address once 
▪ Variables with fixed address are “statically allocated” 

▪ Depending on the language, there may be other statically allocated values 



Revised Memory Layout
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Heap Storage

▪ A value that outlives the procedure that creates it cannot be kept in the AR . 

▪ Eg. method foo() { new Bar } 
▪ The Bar value must survive deallocation of foo’s AR 

▪ Languages with dynamically allocated data use a heap to store dynamic data



Revised Memory Layout

code

stack

Low Address

High Address

Static Data

Heap



Notes

▪ The code area contains object code 
▪ For most languages, fixed size and read only 

▪ The static area contains data (not code) with fixed addresses (e.g., global data) 
▪ Fixed size, may be readable or writable 

▪ The stack contains an AR for each currently active procedure 
▪ Each AR usually fixed size, contains locals 

▪ Heap contains all other data 
▪ In C, heap is managed by malloc and free

▪ Both the heap and the stack grow 
▪ Must take care that they don’t grow into each other 
▪ Solution: start heap and stack at opposite ends of memory and let them grow towards each 

other



Data Layout

▪ Low-level details of machine architecture are important in laying out data for correct 
code and maximum performance 

▪ Chief among these concerns is alignment



Alignment

▪ Most modern machines are (still) 32 bit 
▪ 8 bits in a byte 
▪ 4 bytes in a word 
▪ Machines are either byte or word addressable 

▪  Data is word aligned if it begins at a word boundary 

▪ Most machines have some alignment restrictions or performance penalties for poor 
alignment
▪ SPARC and ARM prohibit unaligned accesses 
▪ MIPS has special unaligned load/store instructions 
▪ x86, 68k run more slowly with unaligned accesses

▪ Example: A string “Hello” Takes 5 characters (without a terminating \0) 
▪ To word align next datum, add 3 “padding” characters to the string • 
▪ The padding is not part of the string, it’s just unused memory



Padding
▪ To avoid unaligned accesses, the C compiler pads the layout of unions and records.

▪ Rules: 
▪ Each n-byte object must start on a multiple of n bytes (no unaligned accesses). 
▪ Any object containing an n-byte object must be of size m*n for some integer m (aligned 

even when arrayed).

struct padded { 
int x;   /* 4 bytes */ 
char z;  /* 1 byte */ 
short y; /* 2 bytes */
char w;  /* 1 byte */ 

};

x x x x
y y z

w

struct padded { 
char a;  /* 1 byte */
short b; /* 2 bytes */
short c; /* 2 bytes */ 

};

b b a
c c



Unions

▪ A C struct has a separate space for each field; a C union shares one space among all 
fields

union intchar { 
 int i;  /* 4 bytes */ 
 char c; /* 1 byte */ 
};

i i i i/c

union twostructs { 
 struct { 

char c; /* 1 byte */  
int i; /* 4 bytes */ 

   } a; 
 struct { 

short s1; /* 2 bytes */
short s2; /* 2 bytes */ 

  } b;
}

c
i i i i

s2 s2 s1 s1or


