
 HW Assignment 3
Total = 60

 due date: 8th December

1. Mark the correct answer. More than one answers can be correct: 2*5 = 10
a. A typical dataflow analysis

i. is computed over control flow graphs
ii. may not reach fixed-point.

iii. is linear in runtime in the number of instructions in the compiled program.

b. Abstract Syntax Tree of a source code:
i. includes all the source code elements including punctuation and delimiters.

ii. can be enhanced with information such as properties and annotations for every
element it contains.

iii. usually contains information about the position of an element in the source code.

c. Along a control flow graph, a node d strictly dominates node i,
i. if all paths from entry to node i include d but d != i

ii. if all paths from entry to node i include d
iii. if every possible path from i to exit includes d

d. A reaching definition is:
i. May Forward analysis

ii. Must Forward analysis
iii. May Backward analysis
iv. Must Backward analysis

e. A definition d is reached at a particular program point n
i. If d is killed at node n-1

ii. If d is killed at node n
iii. If d is killed at node n+1

Problem 2. Consider the following code snippet where variables a, b, c and d are integers.

1 a := 2*a - b
2 b := c - a
3 L0: c := c - b
4 if c > a goto L1
5 b := b * a
6 d := b - a
7 if d < 2 goto L2
8 else goto L0
9 L1: a := b - c
10 c := d + b
11 if c > -3 goto L2
12 else goto L1
13 L2: a := 0
14 b := 2*b
15 return

a. Identify the basic blocks in this piece of code, explicitly writing out the line numbers that belong to each
block. For example, if you think that lines 42 and 43 constitute a basic block, and lines 100, 101, 102
make another basic block, you should write both blocks as: {42,43}, {100,101,102}. 5

b. Draw the control flow graph (CFG) of this example, where each node is a statement. 5
c. Recall that given two nodes v and u in a CFG, v dominates u if all paths from entry to u include v. For

each node u in your CFG, identify all the other nodes v that dominate u.. 5
d. Recall that a back-edge is an edge in the CFG such that the target of the edge dominates the source.

Identify all the back-edges in your CFG, clearly stating the source and target of each edge you
identify. 5

COM W4115 PLT

HW3

Fall 2019

Problem 3. Data flow analysis derives information about the behavior of a program by examining the code
statically. In the lecture slides, there is an example of liveness analysis of variables, and how we can solve data
flow equations to compute the liveness of variables.

Now you need to do the same for available expressions. An expression, x+y, is available at node n if every
path from the entry node to n evaluates x+y, and there are no definitions of x or y after the last evaluation.

Now, considering the following code:
1 x := a + b;

2 y := a * b;

3 z := a - b;
4 while (z > b) {
5 while (y > a) {

6 a := a + 1;
7 x := a + b;
8 }
9 z:= a - b;
10 }

a) Draw the CFG for this code snippet 4
b) What is the dataflow equation of available expressions? 6

Hint: Use the following notations:
i. IN - set of expressions available at start of block

ii. OUT - set of expressions available at end of block
iii. GEN - set of expressions computed in block
iv. KILL - set of expressions killed in in block

c) Work through the algorithm for computing available expression by drawing a table like the one shown
above. Solve the dataflow equations and compute the final IN and OUT for each node. 10

COM W4115 PLT

HW3

Fall 2019

 Problem 4: Consider the following example:

1 #define MAX (1024*1024*32)
2 #define REP 100

3 #define B (16*1024)
4

5 int main() {

6 int i,j,r;
7 char array[MAX];
8

9 clock_t t1 = clock();
10

11 // Tiled loop

12 for (i = 0; i < MAX; i += B) {
13 for (r = 0; r < REP; r++) {
14 for (j = i; j < (i + B); j+=64) {
15 array[j] = r;
16 }
17 }
18 }
19 clock_t t2 = clock();
20

21 // un-tiled loop

22 for (r = 0; r < REP; r++) {
23 for (i = 0; i < MAX; i+=64) {
24 array[i] = r;
25 }
26 }
27

28 clock_t t3 = clock();
29

30 tiled_time = (double)(t2 - t1) / CLOCKS_PER_SEC);

31 untiled_time = (double)(t3 - t2) / CLOCKS_PER_SEC);
32

33 }

 Between tiled_time and untiled_time, which one will take more time and why? 10

