# GLOBAL OPTIMIZATION

Baishakhi Ray

Fall 2020



# Other Global Optimization:

- Constant Propagation
- Dead-code elimination
- Liveness analysis
- Common subexpression elimination
- Loop optimization

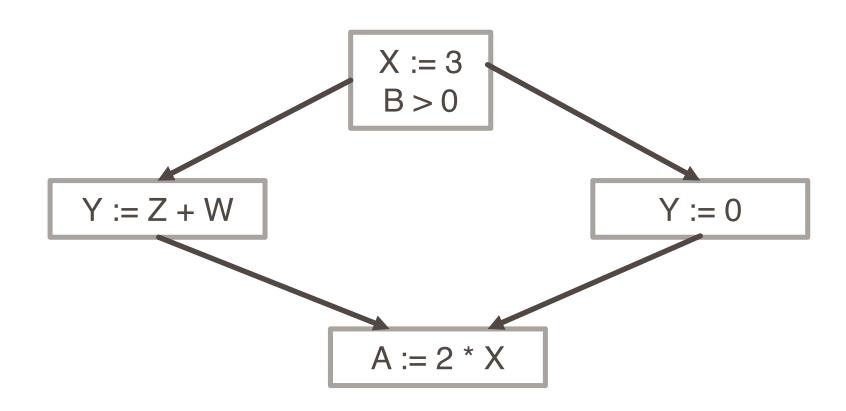
## **Local Optimization**

- Recall the simple basic-block optimizations
  - Constant propagation
  - Dead code elimination

$$X := 3$$
  
 $Y := Z * W$   
 $Q := X + Y$   
 $X := 3$   
 $Y := Z * W$   
 $Q := 3 + Y$ 

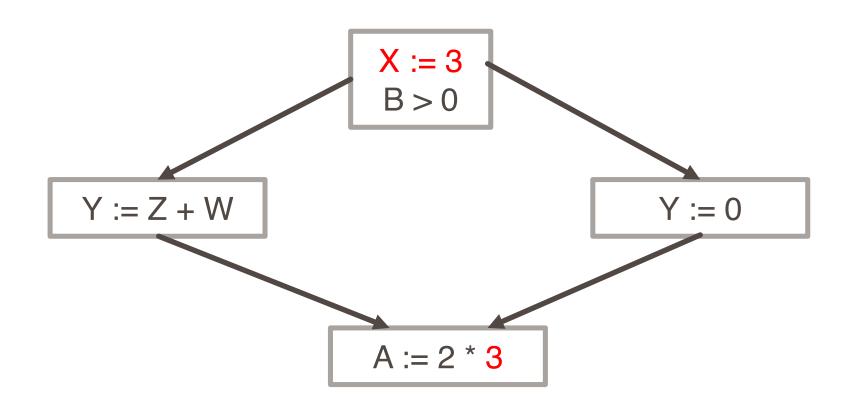
## **Global Optimization**

These optimizations can be extended to an entire control-flow graph



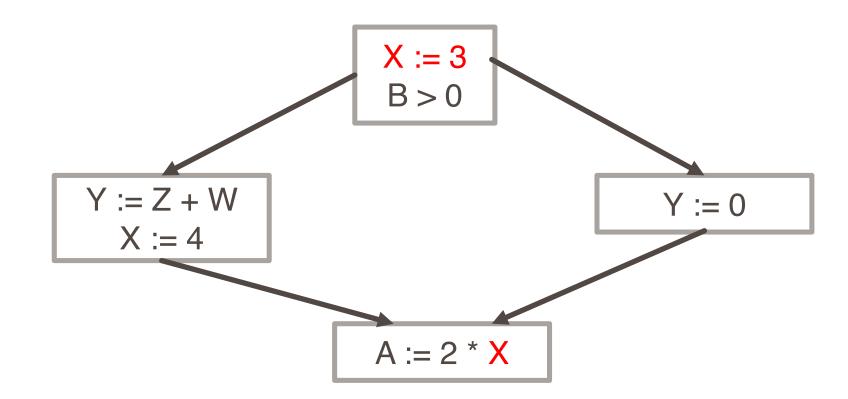
## Global Optimization

These optimizations can be extended to an entire control-flow graph



### Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:



### Correctness (cont..)

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is

$$x := k$$

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
  - An analysis of the entire control-flow graph

# Global Analysis

- Global optimization tasks share several traits:
  - The optimization depends on knowing a property X at a particular point in program execution
  - Proving X at any point requires knowledge of the entire program
  - It is OK to be conservative. If the optimization requires X to be true, then want to know either
    - X is definitely true
    - Don't know if X is true
    - It is always safe to say "don't know"

# Global Analysis (cont..)

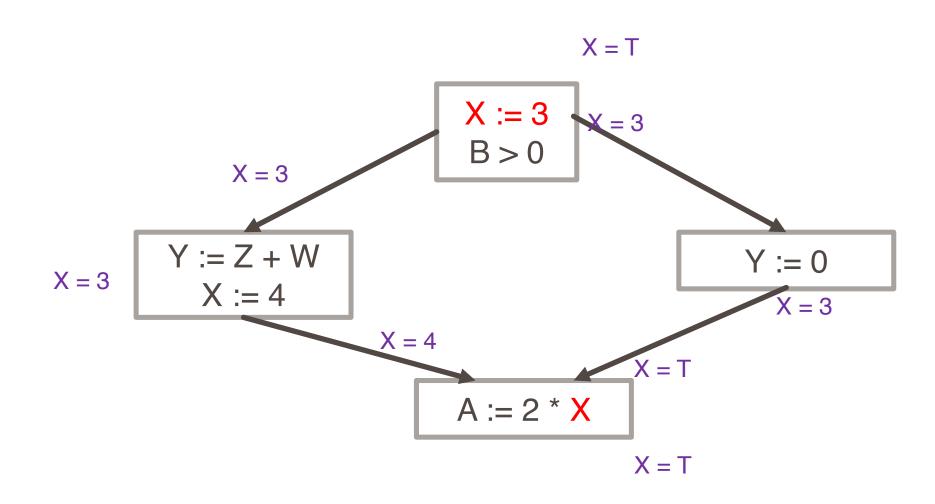
- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

# Global Constant Propagation (Cont.)

 To make the problem precise, we associate one of the following values with X at every program point

| value        | interpretation                |
|--------------|-------------------------------|
| ⊥ ("bottom") | This statement never executes |
| C            | X = constant c                |
| T ("top")    | X is not a constant           |

# Example



# Using the Information

- Given global constant information, it is easy to perform the optimization
  - Simply inspect the x = ? associated with a statement using x
  - If x is constant at that point replace that use of x by the constant
- But how do we compute the properties x = ?

# Using the Information

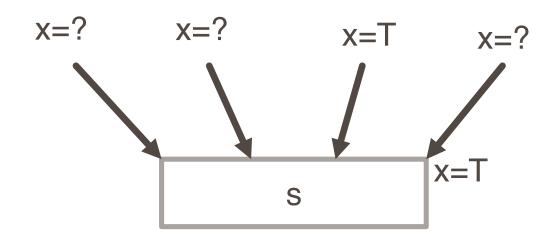
- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s, we compute information about the value of x immediately before and after s

```
C(s,x,in) = value of x before s

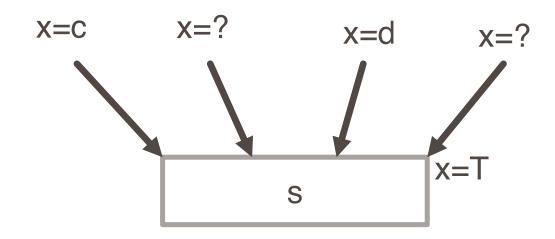
C(s,x,out) = value of x after s
```

### **Transfer Functions**

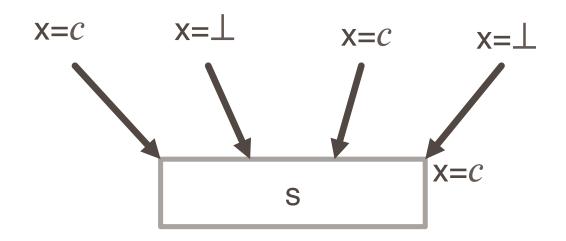
- Define a transfer function that transfers information one statement to another
- In the following rules, let statement s have immediate predecessor statements p<sub>1</sub>,...,p<sub>n</sub>



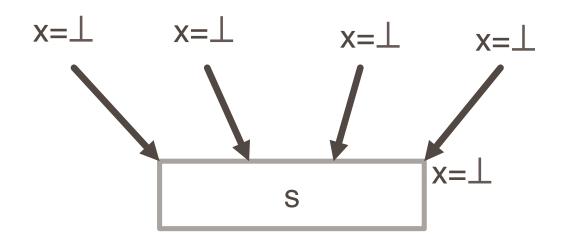
if  $C(p_i, x, out) = T$  for any i, then C(s, x, in) = T



$$C(p_i, x, out) = c \& C(p_j, x, out) = d \& d \Leftrightarrow c$$
  
then  $C(s, x, in) = T$ 

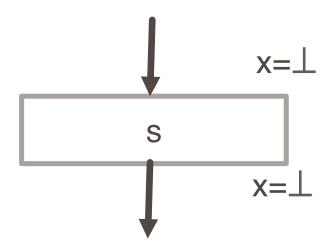


if  $C(p_i, x, out) = c$  or  $\bot$  for all i, then C(s, x, in) = c

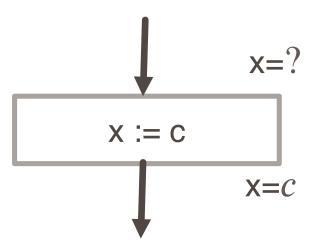


if 
$$C(p_i, x, out) = \bot$$
 for all i,  
then  $C(s, x, in) = \bot$ 

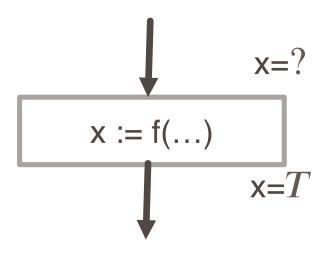
- Rules 1-4 relate the out of one statement to the in of the next statement
- Now we need rules relating the in of a statement to the out of the same statement



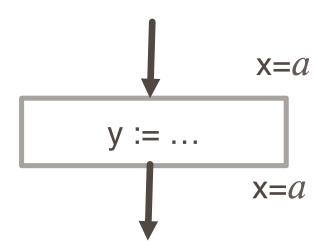
$$C(s, x, out) = \bot$$
  
if  $C(s, x, in) = \bot$ 



C(x := c, x, out) = c if c is a constant



$$C(x := f(...), x, out) = T$$



C(y := ..., x, out) = C(y := ..., x, in) if x >> y

# Algorithm

- 1. For every entry s to the program, set C(s, x, in) = T
- 2. Set C(s, x, in) = C(s, x, out) =  $\perp$  everywhere else
- 3. Repeat until all points satisfy 1-8:
  - Pick s not satisfying 1-8 and update using the appropriate rule

### Ordering:

• We can simplify the presentation of the analysis by ordering the values  $\bot < c < T$ 

# Common subexpression elimination

• Example:

$$a := b + c$$
  $a := b + c$   
 $c := b + c$   $\Rightarrow$   $c := a$   
 $d := b + c$   $d := b + c$ 

- Example in array index calculations
  - c[i+1] := a[i+1] + b[i+1]
  - During address computation, i+1 should be reused
  - Not visible in high level code, but in intermediate code

### **Code Elimination**

#### Unreachable code elimination

- Construct the control flow graph
- Unreachable code block will not have an incoming edge
- After constant propagation/folding, unreachable branches can be eliminated

#### Dead code elimination

Ineffective statements

```
    x := y + 1 (immediately redefined, eliminate!)
    y := 5 ⇒ y := 5
    x := 2 * z
    x := 2 * z
```

- A variable is dead if it is never used after last definition
  - Eliminate assignments to dead variables
- Need to do data flow analysis to find dead variables

## **Function Optimization**

### Function inlining

- Replace a function call with the body of the function
- Save a lot of copying of the parameters, return address, etc.

### Function cloning

Create specialized code for a function for different calling parameters

### Loop optimization

- Consumes 90% of the execution time
  - ⇒ a larger payoff to optimize the code within a loop

### Techniques

- Loop invariant detection and code motion
- Induction variable elimination
- Strength reduction in loops
- Loop unrolling
- Loop peeling
- Loop fusion

#### Loop invariant detection

- If the result of a statement or expression does not change within a loop, and it has no external side-effect
- Computation can be moved to outside of the loop
- Example

```
for (i=0; i<n; i++) a[i] := a[i] + x/y;
```

Three address code

```
for (i=0; i<n; i++) { c := x/y; a[i] := a[i] + c; } 
 \Rightarrow c := x/y; 
 for (i=0; i<n; i++) a[i] := a[i] + c;
```

#### Code Motion

- Reduce frequency with which computation performed
  - If it will always produce same result
  - Especially moving code out of loop

```
for (i = 0; i < n; i++)
  for (j = 0; j < n; j++)
    a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
    int ni = n*i;
    for (j = 0; j < n; j++)
        a[ni + j] = b[j];
}</pre>
```

- Strength reduction in loops
  - Replace costly operation with simpler one
  - Shift, add instead of multiply or divide

$$16*x --> x << 4$$

- Depends on cost of multiply or divide instruction
- Recognize sequence of products

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];
```

```
int ni = 0;
for (i = 0; i < n; i++) {
  for (j = 0; j < n; j++)
    a[ni + j] = b[j];
  ni += n;
}</pre>
```

- Strength reduction in loops
  - Replace costly operation with simpler one
  - Shift, add instead of multiply or divide

```
16*x --> x << 4
```

- Depends on cost of multiply or divide instruction
- Recognize sequence of products

```
s := 0;
for (i=0; i<n; i++)
{
    v := 4 * i;
    s := s + v;
}</pre>
s := 0;
for (i=0; i<n; i++)
    {
    v := v + 4;
    s := s + v;
}</pre>
```

- Induction variable elimination
  - If there are multiple induction variables in a loop, can eliminate the ones which are used only in the test condition
  - Example

```
s := 0; for (i=0; i<n; i++) { s := 4 * i; ... } -- i is not referenced in loop \Rightarrow s := 0; e := 4*n; while (s < e) { s := s + 4; }
```

```
s := 0;
for (i=0; i<n; i++)
{ s := 4 * i; ... }
-- i is not referenced in loop</pre>
s := 0;
e := 4*n;
while (s < e) {
s := s + 4;
}
```

## Code Optimization Techniques

### Loop unrolling

- Execute loop body multiple times at each iteration
- Get rid of the conditional branches, if possible
- Allow optimization to cross multiple iterations of the loop
  - Especially for parallel instruction execution
- Space time tradeoff
  - Increase in code size, reduce some instructions

### Loop peeling

- Similar to unrolling
- But unroll the first and/or last few iterations

### Loop fusion

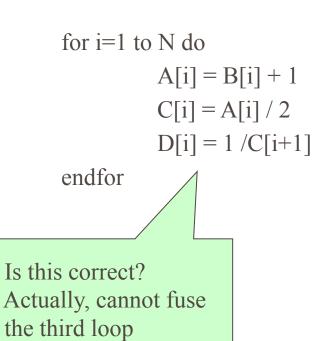
```
Example
for i=1 to N do
A[i] = B[i] + 1
endfor
for i=1 to N do
C[i] = A[i] / 2
endfor
for i=1 to N do
D[i] = 1 / C[i+1]
endfor
```

```
for i=1 to N do A[i] = B[i] + 1 C[i] = A[i] / 2 D[i] = 1 / C[i+1] endfor
```

Before Loop Fusion

### Loop fusion

```
Example
for i=1 to N do
A[i] = B[i] + 1
endfor
for i=1 to N do
C[i] = A[i] / 2
endfor
for i=1 to N do
D[i] = 1 / C[i+1]
endfor
```



Before Loop Fusion

### Limitations of Compiler Optimization

- Operate Under Fundamental Constraint
  - Must not cause any change in program behavior under any possible condition
  - Often prevents it from making optimizations when would only affect behavior under pathological conditions.
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
  - e.g., data ranges may be more limited than variable types suggest
- Most analysis is performed only within procedures
  - whole-program analysis is too expensive in most cases
- Most analysis is based only on static information
  - compiler has difficulty anticipating run-time inputs
- When in doubt, the compiler must be conservative