
INTRODUCTION TO COMPILER
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Calvin Lin, UT Austin

What is a Compiler?

Compiler

#include <iostream>

int main() {
 std::cout << "Hello World!";
 return 0;
}

001100110011
001001001100
110000000111
001000110000
000110110011

Source Program Target Program

Input

Output

What is a Compiler?

CompilerSource Program Target Program

Input

Output

Interpreter
Source Program

Input
Output

A Hybrid Compiler

Translator

Source Program

Interpreter
Intermediate Program

Input
Output

A language processing system

Preprocessor

Compiler

Assembler

Linker/Loader

Source Program

Modified Source Program

Target Assembly Program

Relocatable Machine Code

Target Machine CodeLibrary files
Relocatable object files

A source code typically have many
modules written in different files.

Collect source program from
different files, expand macros, etc.

Assembly code is easier
to produce and debug.

A linker resolves external memory
addresses, where one file’s code

refers another file’s location. Loader puts all the executive
object files to memory for

execution.

What is a Compiler?

Compiler

#include <iostream>

int main() {
 std::cout << "Hello World!";
 return 0;
}

001100110011
001001001100
110000000111
001000110000
000110110011

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Structure of a Typical Compiler

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Analysis Phase

Front End

Synthesis Phase

Back End

Input to Compiler

for i = 1 to 10 do
a[i] = x * 5;

f o r i = 1 t o 1 0 d o a [i] = x * 5 ;

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Lexical Analysis

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

Break character stream into tokens (“words”)

for id(i) <=> number(1) to number(10) do
id(a) <[> id(i) <]> <=> id(x) <*> number(5) <;>

Compiler Data Structure

▪ Symbol Tables
▪ Compile-time data structures
▪ Hold names, type information, and scope information for variables

▪ Scopes
▪ A name space
 e.g., In C/C++, each set of curly braces defines a new scope
▪ Can create a separate symbol table for each scope

Lexical Analysis

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

Break character stream into tokens (“words”)

for id(i) <=> number(1) to number(10) do
id(a) <[> id(i) <]> <=> id(x) <*> number(5) <;>

for <id,1> <=> number(1) to number(10) do
<id,2> <[> <id,1> <]> <=> <id,3> <*> number(5) <;>

1 i …
2 a …
3 x …

Symbol Table

Syntactic Analysis (Parsing)

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

Impose Structure to Token Stream

for

i 1 10 assign

a i x 5

array times
In a typical syntax tree, intermediate nodes represent operations and
Leaf node represent the arguments of the operations.

Semantic Analysis

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

Determine whether source is meaningful

▪ Check for semantic errors
▪ Check for type errors
▪ Gather type information for subsequent stages

▪ Relate variable uses to their declarations

Usage of Symbol Tables

▪ For each variable declaration:
▪ Check for symbol table entry
▪ Add new entry (parsing)
▪ add type info (semantic analysis)

▪ For each variable use:
▪ Check symbol table entry (semantic analysis)

Intermediate Code Generation

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Transform AST into low-level intermediate representation (IR)

Simplifies the IR

• Removes high-level control structures:
 - for, while, do, switch
• Removes high-level data structures:
 - arrays, structs, unions, enums

Intermediate Code Generation

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Transform AST into low-level intermediate representation (IR)

One possible result is assembly-like code

• Semantic lowering
• Control-flow expressed in terms of “gotos”
• Each expression is very simple
 (three-address code)
 e.g., x := a * b * c

 t := a * b
 x := t * c

Intermediate Code Generation

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

i := 1
loop1:
 t1 := x * 5
 t2 := &a
 t3 := sizeof(int)
 t4 := t3 * i
 t5 := t2 + t4
 *t5 := t1
 i := i + 1
 if i <= 10 goto loop1

Optimization

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Mostly machine independent optimization
Phase aims to generate better code.

Better can be
• Faster
• Shorter
• Energy efficient
• …

Optimization

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

for i = 1 to 10 do
a[i] = x * 5;

i := 1
t3 := sizeof(int)
loop1:
 t1 := x * 5
 t2 := &a
 t3 := sizeof(int)
 t4 := t3 * i
 t5 := t2 + t4
 *t5 := t1
 i := i + 1
 if i <= 10 goto loop1

Low Level Code Generation

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Register Transfer Language (RTL)
– Linear representation
– Typically language-independent
– Nearly corresponds to machine instructions

Example operations
• Assignment x := y
• Unary op x := op y
• Binary op x := y op z
• Call x := f()
• Cbranch if (x==3) goto L
• Address of p := & y
• Load x := *(p+4)
• Store *(p+4) := y

Exercise:

a = b + c * 5

Compiler vs Interpreter

Compiler Interpreter
Optimization Compiler sees the entire program. Thus

optimization is easy.
Interpreter sees program line by
line. Thus, optimization is not
robust.

Running time Compiled code runs faster Interpreted code runs slower

Program
Generation

Compiler generates output program,
which can be run independently at a
later point of time.

Do not generate output program.
Evaluate each line one by one
during program execution.

Error Execution Emits compilation errors after the whole
compilation process.

Reads each line and shows errors,
if any.

Example C, C++ Command Lines

Why studying compiler?

Isn’t it a solved problem?

▪ Machines keep changing
▪ New features present new problems (e.g., GPU)
▪ Changing costs lead to different concerns

▪ Languages keep changing
▪ New ideas (e.g., OOP and GC) have gone mainstream

▪ Applications keep changing
▪ Interactive, real-time, mobile, machine-learning based applications

Why studying compiler?

▪ Values keep changing

▪ We used to just care about run-time performance

▪ Now?
▪ Compile-time performance
▪ Code size
▪ Correctness
▪ Energy consumption
▪ Security
▪ Fault tolerance

Value added compilation

▪ The more we rely on software, the more we demand more of it

▪ Compilers can help– treat code as data
▪ Analyze the code

▪ Correctness

▪ Security

Correctness and Security

▪ Can we check whether pointers and addresses are valid?

▪ Can we detect when untrusted code accesses a sensitive part of a system?

▪ Can we detect whether locks are used properly?

▪ Can we use compilers to certify that code is correct?

▪ Can we use compilers to verify that a given compiler transformation is correct?

Value-added Compilation

▪ The more we rely on software, the more we demand more of it

▪ Compilers can help– treat code as data
▪ Analyze the code

▪ Correctness
▪ Security
▪ Reliability
▪ Program understanding
▪ Program evolution

▪ Software testing
▪ Reverse engineering
▪ Program obfuscation
▪ Code compaction
▪ Energy efficiency

Computation important understanding computation important

Why studying compiler?

▪ Compilers are a fundamental building block of modern systems

▪ We need to understand their power and limitations
▪ Computer architects
▪ Language designers
▪ Software engineers
▪ OS/Runtime system researchers
▪ Security researchers
▪ Formal methods researchers (model checking, automated theorem proving)

Due

• Programming assignment 0 is due next Wednesday.
• Set up Git environment

