
LEXICAL ANALYSIS
Baishakhi Ray

Programming Languages & Translators 

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)



Structure  of a Typical Compiler

Intermediate Code 
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Analysis Phase Synthesis Phase



Input to Compiler

/ * s i m p l e  e x a m p l e * /
if ( i = = j )\n\t z = 0 ; \n else\n\t  z = 1 ;

Intermediate Code 
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

/*simple example*/
if(i == j)
 z = 0;
else
 z = 1;



Lexical Analysis

1. Remove comments

‘if’ ‘(’ ‘i’ ‘==’ ‘j’ ‘)’ ‘\n’ ‘\t’ ‘z’ ‘=’ ‘0’ ‘;’ 
‘\n’ ‘else’ ‘\n’ ‘\t’ ‘z’ ‘=’ ‘1’ ‘;’

if ( i = = j )\n\t z = 0 ; \n else\n\t  z = 1 ;

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR 
whitespaces identifier<z> op<=> number<0> <;> whitespaces 
keyword<else> identifier<z> op<=> number<1> ‘;’

2.1. Identify substrings

2.2. Identify token classes

/*simple example*/
if(i == j)
 z = 0;
else
 z = 1;/ * s i m p l e  e x a m p l e * /

if ( i = = j )\n\t z = 0 ; \n else\n\t  z = 1 ;



Token Class 

▪ keywords, identifiers, LPAR, RPAR, number, etc.

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR 
whitespaces identifier<z> op<=> number<0> <;> whitespaces 
keyword<else> identifier<z> op<=> number<1> ‘;’



Token Class 

▪ Each class corresponds to a set of strings

▪ Identifier
▪ Strings are letters or digits, starting with a letter
▪ Eg: 

▪ Numbers: 
▪ A non-empty strings of digits
▪ Eg: 

▪ Keywords
▪ A fixed set of reserved words 
▪ Eg:

▪ Whitespace
▪ A non-empty sequence of blanks, newlines, and tabs



Lexical Analysis (Example)

▪ Classify program substrings according to roles (token class)

▪ Communicate tokens to parser

Lexical Analysis

Syntactic Analysis 
(Parser)

Character stream

Token stream

Token = 
<Class, String>

Z = 1

- <Id, “Z”>
- <Op, “=”>
- <Numbers, “1”>

“Z”, “=”, “1” are called lexemes (an instance of the corr. token class) 



Lexical Analysis: HTML Examples

Here is a photo of <b> my house </b> 

<text, "Here is a photo of"> 
<nodestart, b> 
<text, "my house"> 
<nodeend, b> 



Exercise

 x = p;
 while ( x < 100 ) { x++ ; }



Exercise

if(i == j)
 z = 0;
else
 z = 1;

Keyword/Identifier?

==/=?



Lookahead

▪ Lexical analysis tries to partition the input string into the logical units of the language. 
This is implemented by reading left to right. “scanning”, recognizing one token at a 
time. 

▪ “Lookahead” is required to decide where one token ends and the next token begins. 

if(i == j)
 z = 0;
else
 z = 1;

Keyword/Identifier?

==/=?



Lookahead: Examples

▪ Usually, given the pattern describing the lexemes of a token, it is relatively simple to 
recognize matching lexemes when they occur on the input. 

▪ However, in some languages, it is not immediately apparent when we have seen an 
instance of a lexeme corresponding to a token. 

▪ Lexical analysis may require to “look ahead” to resolve ambiguity.
▪ Look ahead complicates the design of lexical analysis
▪ Minimize the amount of look ahead

FORTRAN RULE: White Space is insignificant: VA R1 == VAR1

DO 5 I = 1,25 

DO 5 I = 1.25



Lexical Analysis: Examples

▪ C++ template Syntax:
▪ Foo<Bar>

▪ C++ stream Syntax:
▪ cin >> var

▪ Ambiguity
▪ Foo<Bar<Bar>>
▪ cin >> var



Lexical Errors

▪ A lexical error is any input that can be rejected by the lexer. 

▪ When a token cannot be recognized by the rules defined token class

▪  Example: '@' is rejected as a lexical error for identifiers in Java (it's reserved).

▪ Recovery

▪ Panic Mode: delete successive characters until a valid token is found

▪ Delete one character from remaining inputs

▪ Insert one character in the remaining input

▪ Replace / transpose 



Lexical Errors

▪ Is fi lexical error?

▪ It can be a function identifier

▪ It is quite difficult for a lexical analyzer to decide whether fi is an error without 
further information

 fi(a==f(x))



Summary So Far

▪ The goal of Lexical Analysis
▪ Partition the input string to lexeme
▪ Identify the token class of each lexeme

▪ Left-to-right scan => look ahead may require

▪ In reality, lookahead is always needed

▪ Our goal is to minimize thee amount of lookahead



Recognizing Lexemes:  
a simple character by character formulation

Recognize word while

c=NextChar();
if(c!=‘w’) { /*do something*/} 
else {
  c=NextChar();
  if(c!=‘h’) { /*do something*/} 
  else {
    c=NextChar();
    if(c!='i'){ /*do something*/}
    else {
      c=NextChar();
      if(c!='l'){ /*do something*/}
      else{
        c=NextChar();
        if(c!='e'){ /*do something*/}
        else{
          /*report success*/
        }}}}

S0

S1

S2

S3

S4

S5

w

h

i

l

e

Si s are all abstract states 
of computation



Recognizing Lexemes

▪ x =  1



A Formalism of Recognizer

▪ A finite automaton consists of 
▪ An input Alphabet:  
▪ A finite set of states: S

▪ A start state:

▪ A set of accepting states: F  S

▪ A set of transitions state: state1  state2

Σ

⊆

𝑖𝑛𝑝𝑢𝑡  
a



A Formalism of Recognizer

▪ A finite automaton consists of 
▪ An input Alphabet:  
▪ A finite set of states: S

▪ A start state: S0

▪ A set of accepting states: F  S

▪ A set of transitions state : state1  state2

Σ

⊆

δ 𝑖𝑛𝑝𝑢𝑡  
a

S={ }

 = {x,=,1}

 = { }

S0, S1, S2, S3

Σ

δ S0
x S1, S0

= S2, S0
1 S3

S0 = S0

F = {S1, S2, S3}



A simple parser for x=1

c=NextChar();
state=
while(c!=‘eof’ and state!= ) { 

state=
c=NextChar();

}

if( )
/* report acceptance */

else 
   /* report failure */

S0
Serr

δ(state, c)

state ∈ F

S={ }

 = {x,=,1}

 = { }

S0, S1, S2, S3

Σ

δ S0
x S1, S0

+ S2, S0
1 S3

S0 = S0

F = {S1, S2, S3}



Example: Lexeme Recognition 

▪ Show simple state transition of :  e = m * c ** 2

S={ }

 = {e,m,c,*,**,2,=}

S0, S1, S2, S3, S4, S5, S6, S7

Σ

δ = {S0
e S1, S0

= S2, S0
m S3, S0

* S4, S4
* S5, S0

c S6, S0
2 S7}

S0 = S0

F = {S1, S2, S3, S4, S5, S6, S7}



Input Buffering

▪ e = m * c ** 2m

e = m * c * * 2 eof

lexemeBegin

forward

sentinel

S0

S1

S2

S3

S5S4

e
=

m
*

*S6

S7
c

2



Question?

▪ Can we run out of buffer space?



Recognizing Token Class

Token

Token Class Lexeme

▪How to describe the string patterns?
▪ i.e., which set of strings belongs to which token class?
▪Use regular languages

▪Use Regular Expressions to define Regular Languages.

String patterns that
 describe the class



REGULAR LANGUAGES



Regular Expressions

▪ Single character
▪ ‘c’ = {“c”}

▪ Epsilon
▪  = {“”}

▪ Union
▪ A + B = {a | a  A}  {b | b  B} 

▪ Concatenation
▪ AB = {ab | a  A ^  b  B} 

▪ Iteration (Kleene closure)

▪
A* =  =  A…..A (i times)

▪ A+ =      (empty string)

ε

𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

Ai

ε



Regular Expressions

▪ Def: The regular expressions over  are the smallest set of expressions including

    R = 

       | ‘c’, ‘c’  

| R + R

| RR

| R* 

    

𝛴

𝜀

𝜖 𝛴



Regular Expression Example

▪  = {p,q}
- q*
- (p+q)q
- p*+q*
- (p+q)*

▪ There can be many ways to write an expression

    

𝛴



Exercise

Choose the regular languages that are equivalent to the given regular language: (p + q)*q(p + q)*


A. (pq + qq)*(p + q)*


B. (p + q)*(qp + qq + q)(p + q)*


C. (q + p)*q(q + p)*


D. (p + q)*(p + q)(p + q)*



Formal Languages

▪ Def: Let  be a set of character (alphabet). A language over is a set 
of strings of characters drawn from .
▪ Regular languages is a formal language

▪ Alphabet = English character, Language = English Language
▪ Is it formal language?

▪ Alphabet = ASCII, Language = C Language

𝛴 𝛴 
𝛴



Formal Language

‘c’ = {“c”}
 = {“”}

A + B = {a | a  A}  {b | b  B} 
AB = {ab | a  A ^  b  B} 
A* =  

𝜀
𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

Ai

expression
Set



Formal Language

L(‘c’) = {“c”}
L  = {“”}
L(A + B) = {a | a  L(A)}  {b | b  L(B)} 
L(AB) = {ab | a  L(A) ^  b  L(B)} 
L(A*) = 

(𝜀)
𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

L(Ai)
expression

Set

L: Expressions -> Set of strings
• Meaning function L maps syntax to semantics
• Mapping is many to one
• Never one to many



Lexical Specifications

▪ Keywords: “if” or “else” or “then” or “for” ….
▪ Regular expression  = ‘i’ ‘f’ + ‘e’ ‘l’ ‘s’ ‘e’

          = ‘if’ + ‘else’ + ‘then’

▪ Numbers: a non-empty string of digits
▪ digit = ‘1’+’0’+’2’+’3’+’4’+’5’+’6’+’7’+’8’+’9’
▪ digit*
▪ How to enforce non-empty string?

▪ digit digit* = digit+



Lexical Specifications

▪ Identifier: strings of letters or digits, starting with a letter
▪ letter = ‘a’ + ‘b’ + ‘c’ + …. + ‘z’ + ‘A’ + ‘B’ + …. + ‘Z’

= [a-zA-Z]
▪ letter (letter + digit)*

▪ Whitespace: a non-empty sequence of blanks, newline, and tabs
▪ (‘ ’ + ‘\n’ + ‘\t’)+



PASCAL Lexical Specification

▪ digit = ‘0’+‘1’+‘2’+‘3’+‘4’+‘5’+‘6’+‘7’+‘8’+‘9’

▪ digits = digit+

▪ opt_fraction = (‘.’ digits) +  = (‘.’ digits)?

▪ opt_exponent = (‘E’ (‘+’ + ‘-’ + ) digits ) + 

               = (‘E’ (‘+’ + ‘-’)? digits )?

▪ num = digits opt_fraction opt_exponent 

𝜀
𝜀 𝜀



Common Regular Expression

▪ At least one A+  AA*

▪ Union: A | B  A + B

▪ Option:  A?  A + 

▪ Range: ‘a’ + … + ‘z’ = [a-z]

▪ Excluded range: complement of [a-z]  [^a-z]

≡

≡
≡ 𝜀

≡



Summary of Regular Languages

▪ Regular Expressions specify regular languages

▪ Five constructs

▪ Two base expression

▪ Empty and 1-character string

▪ Three compound expressions

▪ Union, Concatenation, Iteration



Lexical Specification of a language

1. Write a regex for the lexemes of each token class
▪ Number = digit+
▪ Keywords = ‘if’ + ‘else’ + ..
▪ Identifiers = letter (letter + digit)*
▪ LPAR = ‘(‘



Lexical Specification of a language

2. Construct R, matching all lexemes for all tokens

  R = Number + Keywords + Identifiers + …

    = R1 + R2 + R3 + …

3. Let input be xq…xn.

   For 1  i  n, check x1…xi  L(R)

4. If successful, then we know that 

    x1…xi  L(Rj) for some j

5. Remove x1…xi from input and go to step 3. 

≤ ≤ 𝜖

𝜖



Lexical Specification of a language

▪ How much input is used?
▪ x1…xi  L(R)
▪ x1…xj  L(R), i 
▪ Which one do we want? (e.g., == or =)
▪ Maximal munch: always choose the longer one

▪ Which token is used if more than one matches?
▪ x1…xi  L(R) where R = R1 + R2 + .. + Rn

▪ x1…xi  L(Rm)
▪ x1…xi  L(Rn), m 
▪ Eg: Keywords = ‘if’, Identifier = letter (letter + digit)*, if matches both
▪ Keyword has higher priority
▪ Rule of Thumb: Choose the one listed first

𝜖
𝜖 ≠ 𝑗

𝜖
𝜖
𝜖 ≠ 𝑛



Lexical Specification of a language

▪ What if no rule matches?
▪ x1…xi  L(R) … compiler typically tries to avoid this scenario
▪ Error = [all strings not in the lexical spec]
▪ Put it in last in priority

∉



Summary so far

▪ Regular Expressions are concise notations for the string patterns

▪ Use in lexical analysis with some extensions
▪ To resolve ambiguities
▪ To handle errors

▪ Implementation?
▪ We will study next



Finite Automata

▪ Regular Expression = specification

▪ Finite Automata = implementation

▪ A finite automaton consists of 
▪ An input Alphabet:  
▪ A finite set of states: S

▪ A start state: n

▪ A set of accepting states: F  S

▪ A set of transitions state: state1  state2

Σ

⊆

𝑖𝑛𝑝𝑢𝑡  

a



Transition

▪ s1  s2 (state s1 on input a goes to state s2)

▪ If end of the input and in final state, the input is accepted

▪ Otherwise reject

▪ Language of FA = set of strings accepted by that FA

𝑎  



Example Automata

▪ a finite automaton that accepts only “1”



Example Automata

▪ A finite automaton that accepting any number of  “1” followed by “0”



Regular Expression to NFA

▪ For   (it’s a choice)

▪ For input a   

𝜀
𝜀

𝑎



Finite Automata

▪ Deterministic Finite Automata (DFA)

▪ One transition per input per state

▪ No -moves

▪ Takes only one path through the state graph

▪ Nondeterministic Finite Automata (NFA)

▪ Can have multiple transitions for one input in a given state

▪ Can have -moves

▪ Can choose which path to take

▪ An NFA accepts if some of these paths lead to accepting state at the end of input. 

ε

ε



Finite Automata

▪ An NFA can get into multiple states

▪ Input:     1           0                  0

▪ Output: {A}.     {A,B}            {A,B,C}

A B C
00

0

1



NFA vs. DFA

▪ NFAs and DFAs recognize the same set of regular languages

▪ DFAs are faster to execute

▪ No choices to consider

▪ NFAs are, in general, small



Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Finite Automata

▪ For each kind of regex, define an equivalent NFA
▪ Notation: NFA for regex M

M



Regular Expression to NFA

▪ For  

▪ For input a   

𝜀
𝜀

𝑎



Regular Expression to NFA

▪ For AB

▪ For A + B

A B
𝜀

A

B

𝜀

𝜀

𝜀

𝜀



Regular Expression to NFA

▪ For A*

A 𝜀
𝜀

𝜀

𝜀



Example

▪ (q+p)*q

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p

𝜀



Example

Choose the NFA that accepts the regular expression: 1* + 0.




NFA to DFA

Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



-closure𝜀

▪ -closure of a state is all the state I can reach following 𝜀 𝜀 move .

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p -closure(B) = {B,C,D}𝜀



-closure𝜀

▪ -closure of a state is all the state I can reach following 𝜀 𝜀 move .

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p -closure(B) = {B,C,D}
-closure(G) = {A,B,C,D,G,H,I}

𝜀
𝜀



NFA

▪ An NFA can be in many states at any time

▪ How many different states?
▪ If NFA has N states, it reaches some subset of those states, say S
▪ |S| 
▪ There are 2N – 1 possible subsets (finite number)

≤   𝑁



NFA to DFA

NFA
▪ States S

▪ Start s 

▪ Final state F

▪ Transition state

▪ a(X) = {y | x  X  x )

▪

∈ ⋀
𝑎  𝑦

𝜀 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

DFA

▪ States will be all possible subset of S 
except empty set

▪ Start state = (s)

▪ Final state 

▪ X  if 
▪ Y = 

𝜀 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

{X   𝑋  ∩ 𝐹 =  ∅}
𝑎  𝑌 

ε − closure(a(X))



NFA to DFA

JIHG
FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀
𝜀

𝜀

𝜀
q

q

p



NFA to DFA

JIHG
FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀
𝜀

𝜀

𝜀
q

q

p

ABCDHI



NFA to DFA

JIHG
FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀𝜀

𝜀

𝜀
q

q

p

ABCDHI

FGHIABCD
p



NFA to DFA

JIHG
FD

EC

BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀𝜀

𝜀

𝜀
q

q

p

ABCDHI

FGHIABCD
p

EJGHIABCDq



NFA to DFA

JIHG
FD

EC

BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀𝜀

𝜀

𝜀
q

q

p

ABCDHI

FGHIABCD
p

EJGHIABC
Dq

p

q

p



NFA to DFA

JIHG
FD

EC

BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀𝜀

𝜀

𝜀
q

q

p

ABCDHI

FGHIABCD
p

EJGHIABC
Dq

qp

q

p



Example: NFA to DFA

Hε ε ε
ε ε

ε
ε

ε

ε

0

01



Example: NFA to DFA

Hε ε ε
ε ε

ε
ε

ε

ε

1

1

0

0

0

01



NFA to DFA

Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Implementing DFA

▪ A DFA can be implemented by a 2D table T
▪ One dimension is states
▪ Another dimension is input symbol
▪ For every transition si ->a sk: define T[i,a] = k



Implementing DFA

S

T
p

Uq

qp

q

p

p q
S T U
T T U
U T U

i = p;
state = 0;
while(input[i]) {

  state = A[state,input[i]];
  i++; 
}

Table A



Implementing DFA

p q
S T U
T T U
U T U

Table A

A lot of duplicate entries

S

T
U

Table B

p q
T U

Compact but need an extra indirection
- Inner loop will be slower



Implementing DFA

p q
A {B,H}
B {C,D}
C {E}
…

JIHG
FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀
𝜀

𝜀

𝜀
q

q

p

Deal with set of states rather than single state-! inner loop is complicated



Deterministic Finite Automata: Example

{ 
type token = ELSE | ELSEIF 

}

rule token = 
parse "else"{ ELSE } 

| "elseif"{ ELSEIF } 

e l s e i f



Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string } 

rule token = 
parse "if"{ IF } 

| [’a’-’z’] [’a’-’z’ ’0’-’9’] as lit { ID(lit) } 
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

  f 

a–z0–9

a–eg–z0–9

0–9

a–z0–9


