LEXICAL ANALYSIS

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Structure of a Typical Compiler

Input to Compiler

Lexical Analysis

```
/*simple exampl
if(i == j)
    z = 0;
else
z = 1;
```

/ * simple ex a mple */
if $(i==j) \backslash n \backslash t z=0 ;$ n else $\backslash n \backslash t \quad z=1$;

1. Remove comments
if $(i==j) \backslash n \backslash t z=0 ;$ n else $\backslash n \backslash t \quad z=1$;
2.1. Identify substrings

2.2. Identify token classes
keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR whitespaces identifier<z> op<=> number<0> <;> whitespaces keyword<else> identifier<z> op<=> number<1> ';'

Token Class

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR whitespaces identifier $<\mathrm{z}>$ op $<=>$ number $<0><;>$ whitespaces keyword<else> identifier<z> op<=> number<1> ";'

- keywords, identifiers, LPAR, RPAR, number, etc.

Token Class

- Each class corresponds to a set of strings
- Identifier
- Strings are letters or digits, starting with a letter
- Eg:
- Numbers:
- A non-empty strings of digits
- Eg:
- Keywords
- A fixed set of reserved words
- Eg:
- Whitespace
- A non-empty sequence of blanks, newlines, and tabs

Lexical Analysis (Example)

- Classify program substrings according to roles (token class)
- Communicate tokens to parser

$$
Z=1
$$

- <ld, "Z">
- <Op, "=">
- <Numbers, "1">
"Z", "=", "1" are called lexemes (an instance of the corr. token class)

Lexical Analysis: HTML Examples

Here is a photo of my house
<text, "Here is a photo of"> <nodestart, b>
<text, "my house"> <nodeend, b>

Exercise

Exercise

Lookahead

- Lexical analysis tries to partition the input string into the logical units of the language. This is implemented by reading left to right. "scanning", recognizing one token at a time.
- "Lookahead" is required to decide where one token ends and the next token begins.

Lookahead: Examples

- Usually, given the pattern describing the lexemes of a token, it is relatively simple to recognize matching lexemes when they occur on the input.
- However, in some languages, it is not immediately apparent when we have seen an instance of a lexeme corresponding to a token.

```
FORTRAN RULE: White Space is insignificant: VA R1 == VAR1
DO 5 I = 1,25
DO 5 I = 1.25
```

- Lexical analysis may require to "look ahead" to resolve ambiguity.
- Look ahead complicates the design of lexical analysis
- Minimize the amount of look ahead

Lexical Analysis: Examples

- C++ template Syntax:
- Foo<Bar>
- C++ stream Syntax:
- cin >> var
- Ambiguity
- Foo<Bar<Bar>>
- cin >> var

Lexical Errors

- A lexical error is any input that can be rejected by the lexer.
- When a token cannot be recognized by the rules defined token class
- Example: '@' is rejected as a lexical error for identifiers in Java (it's reserved).
- Recovery
- Panic Mode: delete successive characters until a valid token is found
- Delete one character from remaining inputs
- Insert one character in the remaining input
- Replace / transpose

Lexical Errors

- Is fi lexical error?
- It can be a function identifier
- It is quite difficult for a lexical analyzer to decide whether fi is an error without further information

Summary So Far

- The goal of Lexical Analysis
- Partition the input string to lexeme
- Identify the token class of each lexeme
- Left-to-right scan => look ahead may require
- In reality, lookahead is always needed
- Our goal is to minimize thee amount of lookahead

Recognizing Lexemes: a simple character by character formulation

Recognize word while

```
c=NextChar();
if(c!='W') { /*do something*/}
else {
    c=NextChar();
    if(c!=`h') { /*do something*/}
    else {
        c=NextChar();
        if(c!='i'){ /*do something*/}
        else {
            c=NextChar();
            if(c!='l'){ /*do something*/}
            else{
                c=NextChar();
                if(c!='e'){ /*do something*/}
                else{
                    /*report success*/
                } } } }
```

Si s are all abstract states of computation

Recognizing Lexemes

- $x=1$

A Formalism of Recognizer

- A finite automaton consists of
- An input Alphabet: Σ
- A finite set of states: S
- A start state:

- A set of accepting states: $F \subseteq S$

- A set of transitions state: state $1 \xrightarrow{\text { input }}$ state 2

A Formalism of Recognizer

- A finite automaton consists of
- An input Alphabet: Σ
- A finite set of states: S

$$
\begin{aligned}
& \mathrm{S}=\left\{S_{0}, S_{1}, S_{2}, S_{3}\right\} \\
& \Sigma=\{\mathrm{x},=, 1\} \\
& \delta=\left\{S_{0} \xrightarrow{\mathrm{x}} S_{1}, S_{0} \xrightarrow{=} S_{2}, S_{0} \xrightarrow{1} S_{3}\right\} \\
& S_{0}=S_{0} \\
& F=\left\{S_{1}, S_{2}, S_{3}\right\}
\end{aligned}
$$

- A start state: SO \longrightarrow
- A set of accepting states: $F \subseteq S$
- A set of transitions state δ : state $1 \xrightarrow{\text { input }}$ state2

A simple parser for $\mathrm{x}=1$

```
c=NextChar();
state \(=S_{0}\)
while(c!=‘eof' and state! \(=S_{\text {err }}\) ) \{
    state \(=\delta(\) state,\(c)\)
    c=NextChar ();
\}
if (state \(\in F\) )
    /* report acceptance */ \(F=\left\{S_{1}, S_{2}, S_{3}\right\}\)
else
    /* report failure */
```

Example: Lexeme Recognition

- Show simple state transition of : $e=m * c * 2$

$$
\begin{aligned}
& \mathrm{S}=\left\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\} \\
& \Sigma=\left\{\mathrm{e}, \mathrm{~m}, \mathrm{c},{ }^{* * *}, 2,=\right\} \\
& \delta=\left\{S_{0} \xrightarrow{\mathrm{e}} S_{1}, S_{0} \xrightarrow{=} S_{2}, S_{0} \xrightarrow{\mathrm{~m}} S_{3}, S_{0} \stackrel{*}{\rightarrow} S_{4}, S_{4} \stackrel{*}{\rightarrow} S_{5}, S_{0} \xrightarrow{\mathrm{c}} S_{6}, S_{0} \xrightarrow{2} S_{7}\right\} \\
& S_{0}=S_{0} \\
& F=\left\{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\right\}
\end{aligned}
$$

Input Buffering

- $e=m * c^{* *} 2 m$

Question?

- Can we run out of buffer space?

Recognizing Token Class

- How to describe the string patterns?
- i.e., which set of strings belongs to which token class?
- Use regular languages
- Use Regular Expressions to define Regular Languages.

REGULAR LANGUAGES

Regular Expressions

- Single character
- 'c' = \{"c"\}
- Epsilon
- $\varepsilon=\left\{\right.$ """ $\left.^{\prime}\right\}$
- Union
- $A+B=\{a \mid a \in A\} \cup\{b \mid b \in B\}$
- Concatenation
- $A B=\left\{a b \mid a \in A^{\wedge} b \in B\right\}$
- Iteration (Kleene closure)
. $\mathrm{A}^{*}=\bigcup_{i>=0} A^{i}=\mathrm{A} \ldots . \mathrm{A}$ (itimes)
- A+ $=\varepsilon$ (empty string)

Regular Expressions

- Def: The regular expressions over Σ are the smallest set of expressions including

$$
\begin{aligned}
& \mathrm{R}=\varepsilon \\
& \begin{array}{l}
\text { | 'c', ‘c' } \epsilon \Sigma \\
\text { | } \mathrm{R}+\mathrm{R} \\
\text { | } \mathrm{RR} \\
\text { | } \mathrm{R}^{*}
\end{array}
\end{aligned}
$$

Regular Expression Example

- $\Sigma=\{\mathrm{p}, \mathrm{q}\}$
- q^{*}
- $(p+q) q$
- $p^{*}+q^{*}$
- $(p+q)^{*}$
- There can be many ways to write an expression

Exercise

Choose the regular languages that are equivalent to the given regular language: $(p+q)^{\star} q(p+q)^{*}$
A. $(p q+q q)^{*}(p+q)^{\star}$
B. $(p+q)^{*}(q p+q q+q)(p+q)^{\star}$
C. $(q+p)^{*} q(q+p)^{*}$
D. $(p+q)^{*}(p+q)(p+q)^{*}$

Formal Languages

- Def: Let Σ be a set of character (alphabet). A language over Σ is a set of strings of characters drawn from Σ.
- Regular languages is a formal language
- Alphabet = English character, Language = English Language
- Is it formal language?
- Alphabet $=$ ASCII, Language $=$ C Language

Formal Language

Formal Language

$$
\begin{aligned}
& L\left({ }^{\prime} c^{\prime}\right)=\left\{{ }^{\prime \prime}{ }^{\prime \prime}\right\} \\
& \mathrm{L}(\varepsilon)=\left\{{ }^{\prime " \prime}\right\} \\
& L(A+B)=\{a \mid a \epsilon L(A)\} \cup\{b \mid b \in L(B)\} \\
& \mathrm{L}(\mathrm{AB})=\left\{\mathrm{ab} \mid \mathrm{a} \epsilon \mathrm{~L}(\mathrm{~A})^{\wedge} \mathrm{b} \epsilon \mathrm{~L}(\mathrm{~B})\right\} \\
& \underbrace{\mathrm{L}}\left(\mathrm{~A}^{*}\right)=\bigcup_{i>=0} L\left(A^{i}\right) \\
& \text { expression } \\
& \text { L: Expressions -> Set of strings } \\
& \text { - Meaning function L maps syntax to semantics } \\
& \text { - Mapping is many to one } \\
& \text { - Never one to many }
\end{aligned}
$$

Lexical Specifications

- Keywords: "if" or "else" or "then" or "for"
- Regular expression = 'i' 'f' + 'e' 'l' 's' 'e'

$$
=\text { 'if' + 'else' + 'then' }
$$

- Numbers: a non-empty string of digits
- digit = '1'+'0'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
- digit*
- How to enforce non-empty string?
- digit digit* $=$ digit ${ }^{+}$

Lexical Specifications

- Identifier: strings of letters or digits, starting with a letter
- letter = 'a' + 'b’ + 'c' + + 'z' + 'A' + 'B' + + 'Z'
$=[a-z A-Z]$
- letter (letter + digit)*
- Whitespace: a non-empty sequence of blanks, newline, and tabs
- (' $\left.{ }^{\prime}+{ }^{\prime} n^{\prime}+{ }^{\prime} t^{\prime}\right)^{+}$

PASCAL Lexical Specification

- digits = digit+
- opt_fraction $=$ ($($. digits) $+\varepsilon=$ ($($. ' digits) ?
- opt_exponent $=($ ('E' ('+' + ' - ' $+\varepsilon$) digits $)+\varepsilon$

$$
=\left({ }^{\prime} E^{\prime}\left({ }^{\prime}++^{\prime}+{ }^{\prime}-\prime\right) \text { ? digits }\right) ?
$$

- num = digits opt_fraction opt_exponent

Common Regular Expression

- At least one $\mathrm{A}^{+} \equiv \mathrm{AA}{ }^{*}$
- Union: A I B 三 A + B
- Option: A ? $\equiv \mathrm{A}+\varepsilon$
- Range: 'a’ + ... + 'z' = [a-z]
- Excluded range: complement of $[a-z] \equiv[\wedge a-z]$

Summary of Regular Languages

- Regular Expressions specify regular languages
- Five constructs
- Two base expression
- Empty and 1-character string
- Three compound expressions
- Union, Concatenation, Iteration

Lexical Specification of a language

1. Write a regex for the lexemes of each token class

- Number = digit ${ }^{+}$
- Keywords = 'if' + 'else' + ..
- Identifiers = letter (letter + digit)*
- LPAR = '('

Lexical Specification of a language

2. Construct R, matching all lexemes for all tokens

$$
\begin{aligned}
& R=\text { Number }+ \text { Keywords }+ \text { Identifiers }+\ldots \\
& =R_{1}+R_{2}+R_{3}+\ldots
\end{aligned}
$$

3. Let input be $x_{q} \ldots x_{n}$.

For $1 \leq \mathrm{i} \leq \mathrm{n}$, check $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}} \in \mathrm{L}(\mathrm{R})$
4. If successful, then we know that
$x_{1} \ldots x_{i} \in L\left(R_{j}\right)$ for some j
5. Remove $x_{1} \ldots x_{i}$ from input and go to step 3.

Lexical Specification of a language

- How much input is used?
- $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}} \in \mathrm{L}(\mathrm{R})$
- $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{j}} \in \mathrm{L}(\mathrm{R}), \mathrm{i} \neq j$
- Which one do we want? (e.g., == or =)
- Maximal munch: always choose the longer one
- Which token is used if more than one matches?
- $x_{1} \ldots x_{i} \in L(R)$ where $R=R_{1}+R_{2}+. .+R_{n}$
- $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}} \in \mathrm{L}\left(\mathrm{R}_{\mathrm{m}}\right)$
- $\mathrm{x}_{1} \ldots \mathrm{x}_{\mathrm{i}} \in \mathrm{L}\left(\mathrm{R}_{\mathrm{n}}\right), \mathrm{m} \neq n$
- Eg: Keywords = 'if', Identifier = letter (letter + digit)*, if matches both
- Keyword has higher priority
- Rule of Thumb: Choose the one listed first

Lexical Specification of a language

- What if no rule matches?
- $x_{1} \ldots x_{i} \notin L(R)$... compiler typically tries to avoid this scenario
- Error = [all strings not in the lexical spec]
- Put it in last in priority

Summary so far

- Regular Expressions are concise notations for the string patterns
- Use in lexical analysis with some extensions
- To resolve ambiguities
- To handle errors
- Implementation?
- We will study next

Finite Automata

- Regular Expression = specification
- Finite Automata = implementation
- A finite automaton consists of
- An input Alphabet: Σ
- A finite set of states: S
- A start state: n
- A set of accepting states: $F \subseteq S$
- A set of transitions state: state $1 \xrightarrow{\text { input }}$ state2

Transition

- $s 1 \xrightarrow{a}$ s2 (state s1 on input a goes to state s2)
- If end of the input and in final state, the input is accepted
- Otherwise reject
- Language of FA = set of strings accepted by that FA

Example Automata

- a finite automaton that accepts only "1"

Example Automata

- A finite automaton that accepting any number of " 1 " followed by " 0 "

Regular Expression to NFA

- For ε (it's a choice)

- For input a

Finite Automata

- Deterministic Finite Automata (DFA)
- One transition per input per state
- No ε-moves
- Takes only one path through the state graph
- Nondeterministic Finite Automata (NFA)
- Can have multiple transitions for one input in a given state
- Can have ε-moves
- Can choose which path to take
- An NFA accepts if some of these paths lead to accepting state at the end of input.

Finite Automata

- An NFA can get into multiple states

- Input: 10
- Output: $\{A\} . \quad\{A, B\} \quad\{A, B, C\}$

NFA vs. DFA

- NFAs and DFAs recognize the same set of regular languages
- DFAs are faster to execute
- No choices to consider
- NFAs are, in general, small

Finite Automata

- For each kind of regex, define an equivalent NFA
- Notation: NFA for regex M

Regular Expression to NFA

- For ε

Regular Expression to NFA

- For AB

- For A + B

Regular Expression to NFA

- For A^{*}

Example

- $(q+p)^{*} q$

Example

Choose the NFA that accepts the regular expression: $1^{*}+0$.

NFA to DFA

ε-closure

- ε-closure of a state is all the state I can reach following ε move .

ε-closure

- ε-closure of a state is all the state I can reach following ε move .

- An NFA can be in many states at any time
- How many different states?
- If NFA has N states, it reaches some subset of those states, say S
- ISI $\leq N$
- There are $2^{\mathrm{N}}-1$ possible subsets (finite number)

NFA to DFA

NFA

- States S
- Start s
- Final state F
- Transition state
- $\mathbf{a}(\mathrm{X})=\{\mathrm{y} \mid \mathrm{x} \in \mathrm{X} \bigwedge \mathrm{x} \xrightarrow{a} y)$
- ε-closure

DFA

- States will be all possible subset of S except empty set
- Start state $=\varepsilon-$ closure (s)
- Final state $\{\mathrm{X} \mid X \cap F=\varnothing\}$
- $\mathrm{X} \xrightarrow{a} Y$ if
- $\mathrm{Y}=\varepsilon-\operatorname{closure}(a(X))$

NFA to DFA

Example: NFA to DFA

Example: NFA to DFA

NFA to DFA

Implementing DFA

- A DFA can be implemented by a 2D table T
- One dimension is states
- Another dimension is input symbol
- For every transition $\mathrm{s}_{\mathrm{i}}->\mathrm{a} \mathrm{s}_{\mathrm{k}}$: define $\mathrm{T}[\mathrm{i}, \mathrm{a}]=\mathrm{k}$

Implementing DFA

Table A


```
i = p;
state = 0;
while(input[i]) {
        state = A[state,input[i]];
        i++;
    }
```


Implementing DFA

Table A

Table B

Compact but need an extra indirection

- Inner loop will be slower

Implementing DFA

Deal with set of states rather than single state- \rightarrow inner loop is complicated

Deterministic Finite Automata: Example

Deterministic Finite Automata

```
{ type token = IF | ID of string | NUM of string }
rule token =
    parse "if"{ IF }
        | ['a'-' z'] ['a' -' z' '0' -' 9'] as lit { ID(lit) } 
```


