Programming Languages & Translators

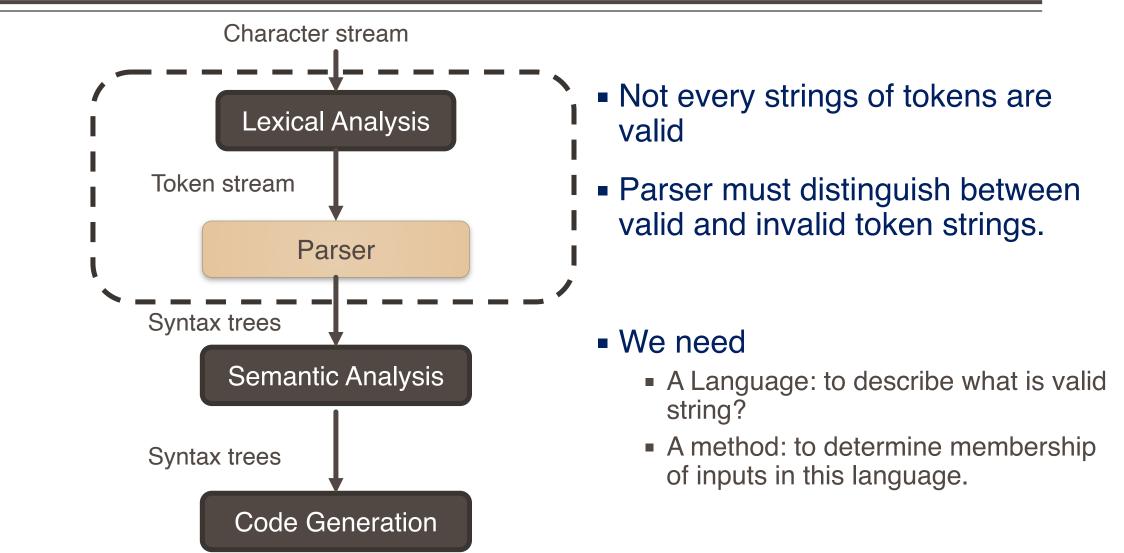
PARSING

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

- - Is it a valid token stream in C language?
 - Is it a valid statement in C language?

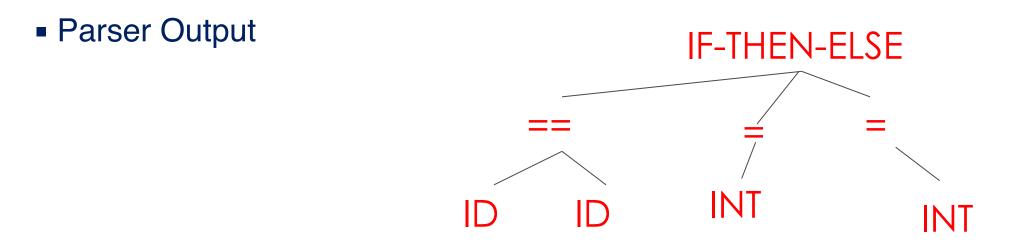
Intro to Parsing



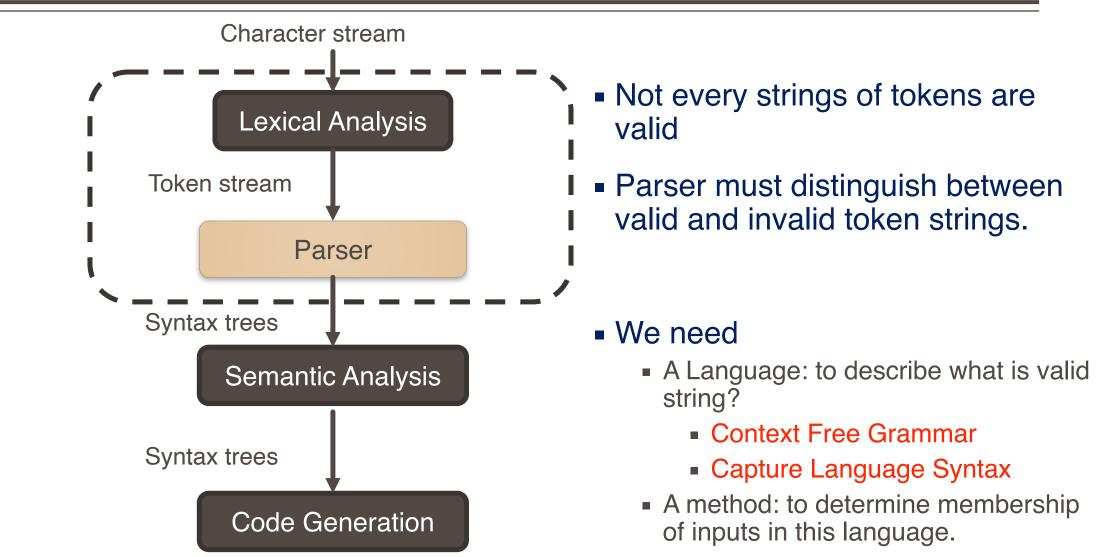
Input: if(x==y) 1 else 2;

Parser Input (Lexical Input):

KEY(IF) '(' ID(x) OP('==') ')' INT(1) KEY(ELSE) INT(2) ';'



Intro to Parsing



A CFG consists of

- A set of terminal T
- A set of non-terminal N
- A start symbol S (S & N)
- A set of production rules

■ X € N

•
$$Y_i \in \{N, T, \varepsilon\}$$

- Ex: S -> (S) | ε
 - N = {S}
 - $T = \{ (,), \varepsilon \}$

Context Free Grammar

- 1. Begin with a string with only the start symbol S
- 2. Replace a non-terminal X with in the string by the RHS of some production rule:

 $X -> Y_1 - ... + Y_n$

3. Repeat 2 again and again until there are no non-terminals

 $X_1, \dots, X_i \underset{i+1}{\underline{X}} X_{i+1}, \dots, X_n \xrightarrow{i} X_1, \dots, X_i \underset{i+1}{\underline{Y}} X_{i+1}, \dots, X_n$

For the production rule X -> Y_1 Y_k

$$\alpha_0 \to \alpha_1 \to \alpha_2 \to \alpha_3 \dots \to \alpha_n$$

$$\alpha_0 \stackrel{*}{\to} \alpha_n, n \ge 0$$

• Let G be a CFG with start symbol S. Then the language L(G) of G is:

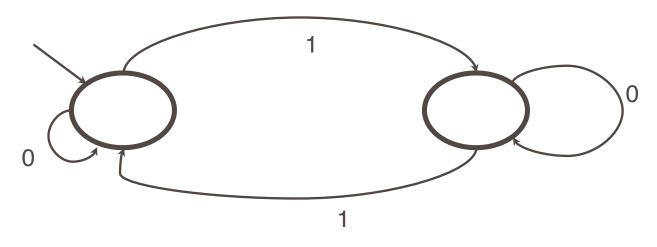
$$\{a_1 \dots a_i \dots a_n | \forall i a_i \in T \land S \xrightarrow{*} a_1 \dots a_i \dots a_n\}$$

- There are no rules to replace terminals.
- Once generated, terminals are permanent
- Terminals ought to be tokens of programming languages
- Context-free grammars are a natural notation for this recursive structure

Languages and Automata

- Formal languages are very important in programming languages
- Regular Languages
 - Weakest formal languages that are widely used
 - Many applications
- Many Languages are not regular

Automata that accept odd numbers of 1



How many 1s it has accepted?

- Only solution is duplicate state

Automata do not have any memory

Regular Languages

- Weakest formal languages that are widely used
- Many applications
- Consider the language $\{(^i)^i \mid i \geq 0\}$
 - (), (()), ((()))
 - ((1 + 2) * 3)
- Nesting structures
 - if .. if.. else.. else..

Regular languages cannot handle well

 $E \rightarrow E + E$ I E * EI (E)I id

Languages can be generated: id, (id), (id + id) * id, ...

 $S \to aXa$ $X \to \varepsilon \mid bY$ $Y \to \varepsilon \mid cXc$

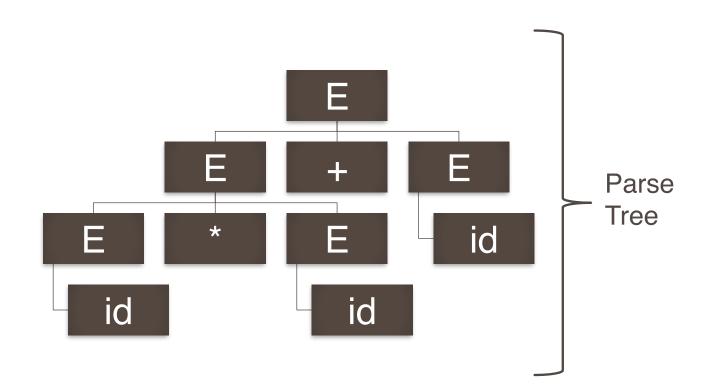
Some Valid Strings are: aba, abcca, ...

Derivation

- A derivation is a sequence of production
 - S -> ... -> ... ->
- A derivation can be drawn as a tree
 - Start symbol is tree's root
 - For a production $X \rightarrow Y_1 \dots Y_n$, add children $Y_1 \dots Y_n$ to node X

- Grammar
 - E -> E + E | E * E | (E) | id
- String
 - id * id + id
- Derivation
- E -> E + E
- -> E * E + E
- -> id * E + E
- -> id * id + E

-> id * id + id



Parse Tree

• A parse tree has

- Terminals at the leaves
- Non-terminals at the interior nodes
- An in-order traversal of the leaves is the original input

• The parse tree shows the association of operations, the input string does not

Parse Tree

- Left-most derivation
 - At each step, replace the left-most nonterminal

E->E+E E->E+E

- -> E * E + E -> E + id
- -> id * E + E -> E * E + id

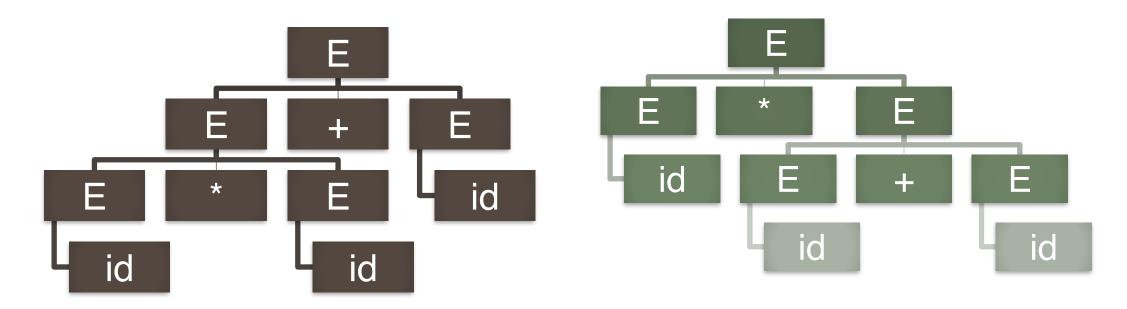
-> id * id + E -> id * id + id -> id * id + id

Note that, right-most and left-most derivations have the same parse tree

- Right-most derivation
 - At each step, replace the right-most nonterminal

Ambiguity

- Grammar
 - E -> E + E | E * E | (E) | id
- String
 - id * id + id



- A grammar is ambiguous if it has more than one parse tree for a string
 - There are more than one right-most or left-most derivation for some string
- Ambiguity is bad
 - Leaves meaning for some programs ill-defined

S->SS|a|b

Resolving Ambiguity

Most direct way to rewrite the grammar unambiguously

id*id+id

E = E' + E | E'E' = id * E' | id | (E) * E' | (E)

Resolving Ambiguity

Impossible to convert ambiguous to unambiguous grammar automatically

- Instead of rewriting
 - Use ambiguous grammar
 - Along with disambiguating rules
 - Eg, precedence and associativity rules
 - Enforces precedence of * over +
 - associativity: %left +

A parser traces the derivation of a sequence of tokens

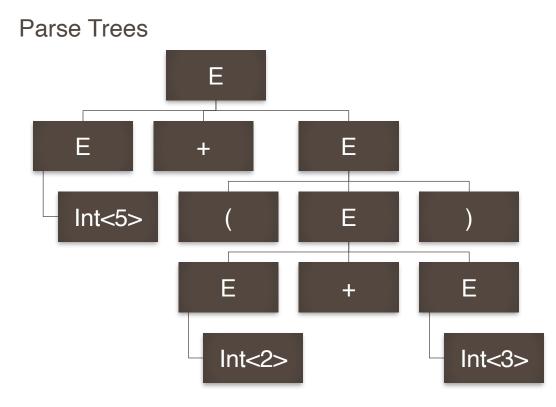
 But the rest of the compiler needs a structural representation of the program

- Abstract Syntax Trees
 - Like parse trees but ignore some details
 - Abbreviated as AST

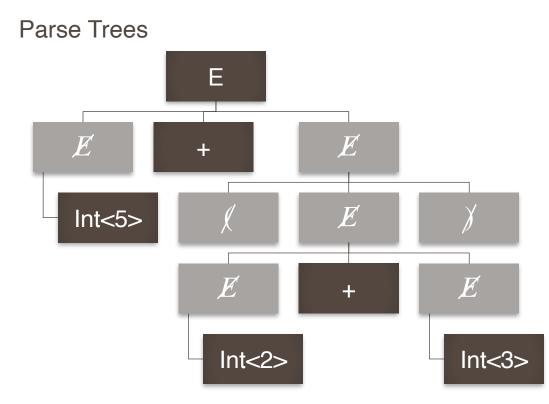
Abstract Syntax Trees

- Grammar
 - E -> int I (E) I E + E
- String
 5 + (2 + 3)
- After lexical analysis
 - Int<5> '+' '(' Int<2> '+' Int<3> ')'

Abstract Syntax Trees: 5 + (2 + 3)

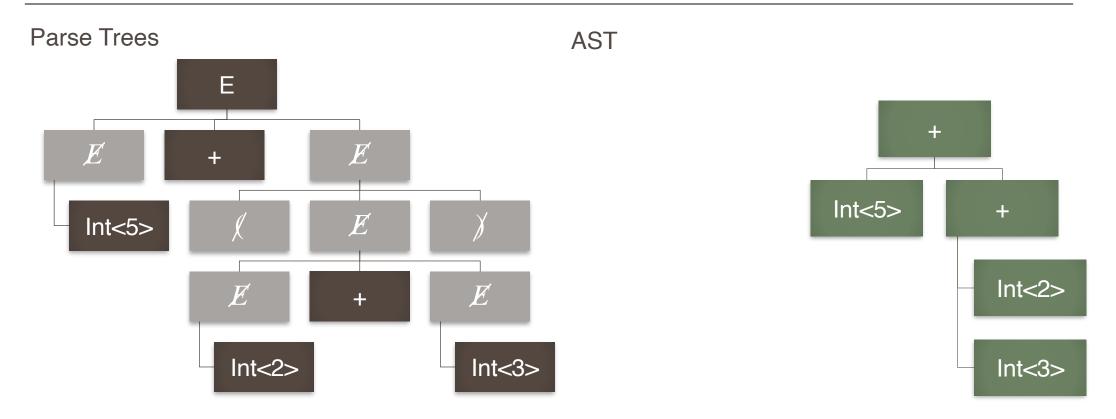


Abstract Syntax Trees: 5 + (2 + 3)



- Have too much information
 - Parentheses
 - Single-successor nodes

Abstract Syntax Trees: 5 + (2 + 3)



- Have too much information
 - Parentheses
 - Single-successor nodes

- ASTs capture the nesting structure
- But abstracts from the concrete syntax
 - More compact and easier to use

Error Handling

Purpose of the compiler is

- To detect non-valid programs
- To translate the valid ones
- Many kinds of possible errors (e.g., in C)

Error Kind		Example	Detected by
Lexical	Misspelling of identifiers, keywords, or operators.	\$	Lexer
Syntax	Misplaced operators, semicolons, braces, switch-case statements, etc.	X*%	Parser
Semantic	Type mismatches between operators and operands	int x; y = x(3);	Type Checker
Correctness	Incorrect reasoning	Using = instead of ==	tester/user

Error Handler should

- Discover errors accurately and quickly
- Recover from an error quickly
- Not slow down compilation of valid code

Types of Error Handling

- Panic mode
- Error productions
- Automatic local or global correction

Panic mode is simplest and most popular method

- When an error is detected
 - Discard tokens until one with a clear role is found
 - Typically looks for "synchronizing" tokens
 - Typically the statement of expression terminators
 - Example: delimiters (; }, etc.)
 - Continue from there

- Example:
 - (1 + + 2) + 3
- Panic-mode recovery:
 - Skip ahead to the next integer and then continue
- Bison: use the special terminal error to describe how much input to skip
 E -> int | E + E | (E) | error int | (error)

Error Productions

- Specify known common mistakes in the grammar
- Example:
 - Write 5x instead of 5 * x
 - Add production rule E -> .. I E E
- Disadvantages
 - complicates the grammar

Idea: find a correct "nearby" program

- Try token insertions and deletions (goal: minimize edit distance)
- Exhaustive search

Disadvantages

- Hard to implement
- Slows down parsing of correct programs
- "Nearby" is not necessarily "the intended" program

Past

- Slow recompilation cycle (even once a day)
- Find as many errors in once cycle as possible

Disadvantages

- Quick recompilation cycle
- Users tend to correct one error/cycle
- Complex error recovery is less compelling

- The parse tree is constructed
 - From the top
 - From left to right

Terminals are seen in order of appearance in the token stream

- Grammar:
 - E -> T | T + E
 T -> int | int * T | (E)
- Token Stream: (int<5>)

- Start with top level non-terminal E
 - Try the rules for E in order

$E \rightarrow T I T + E$

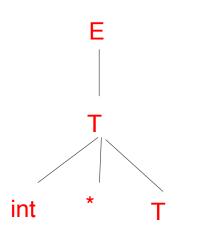
 $T \rightarrow int I int * T I (E)$

mismatch: int does not match arrowhead (backtrack

(int<5>) ↑

 $E \rightarrow T | T + E$

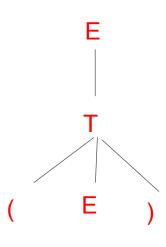
 $T \rightarrow int I int * T I (E)$



backtrack

 $E \rightarrow T I T + E$

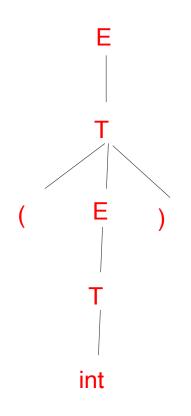
 $T \rightarrow int I int * T I (E)$



Match! Advance input

$E \rightarrow T I T + E$

 $T \rightarrow int I int * T I (E)$

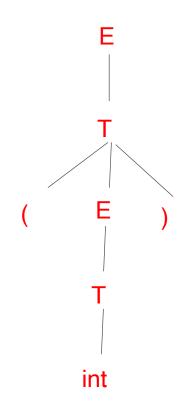


Match! Advance input

(int<5>) ↑

$E \rightarrow T I T + E$

 $T \rightarrow int I int * T I (E)$



Match! Advance input

 $E \rightarrow E' \mid E' + E$ $E' \rightarrow -E' \mid id \mid (E)$

Input: id + id

A Recursive Descent Parser. Preliminaries

TOKEN be the type of tokens

Special tokens INT, OPEN, CLOSE, PLUS, TIMES

The global next point to the next token

A Top Down Parsing Algorithm

void A() {

}

```
Choose an A-production: A - > S_1 S_2 \dots S_k;
for (i=1 or k) {
  if (S_i \text{ is a nonterminal})
        Call S_i();
   else if (X_i == current input TOKEN tok). /*terminal*/
          next++;
   else
        /* Error */
}
```

Recursion without backtracking

- Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term (TOKEN tok) { return *next++ == tok; }

The nth production of S: bool S_n() { ... }

Try all productions of S:
 bool S() { ... }

• For production $E \rightarrow T$

bool E₁() { return T(); }

• For production $E \rightarrow T + E$

bool E2() { return T() && term(PLUS) && E(); }

For all productions of E (with backtracking)
 bool E() {

```
TOKEN *save = next;
```

```
return (next = save, E_1()) || (next = save, E_2());
```

Grammar:

E -> T I T + E T -> int I int * T I (E)

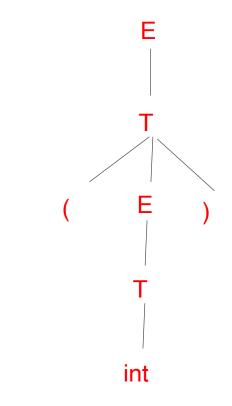
```
bool T() {
    TOKEN *save = next;
    return (next = save, T<sub>1</sub>()) || (next = save, T<sub>2</sub>()) || (next = save, T<sub>3</sub>());
}
```

To start the parser

- Initialize next to point to first token
- Invoke E() (start symbol)

Example

```
Grammar:
E \rightarrow T I T + E
T \rightarrow int | int * T | (E)
Input: (int)
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E<sub>1</sub>() { return T(); }
bool E<sub>2</sub>() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
         return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T<sub>2</sub>() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
         \parallel (next = save, T<sub>2</sub>())
         \parallel (next = save, T<sub>3</sub>()); }
```



Example

Grammar: $E \rightarrow T | T + E$ $T \rightarrow int | int * T | (E)$ Input: int Code: bool term(TOKEN tok) { return

```
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
return (next = save, E_1()) || (next = save, E_2()); }
bool T_1() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T_3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
return (next = save, T_1())
|| (next = save, T_2())
|| (next = save, T_3()); }
```

When Recursive Descent Does Not Work

```
Grammar:
E \rightarrow T I T + E
T \rightarrow int \mid int * T \mid (E)
Input: int * int
Code:
bool term(TOKEN tok) { return *next++ == tok; }
bool E_1() { return T(); }
bool E_2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
          return (next = save, E_1()) || (next = save, E_2()); }
bool T<sub>1</sub>() { return term(INT); }
bool T_2() { return term(INT) && term(TIMES) && T(); }
bool T<sub>3</sub>() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
     return (next = save, T_1())
          | (next = save, T_2())
             (next = save, T_3()); \}
```

- If production for non-terminal X succeeds
 - Cannot backtrack to try different production for X later
- General recursive descent algorithms support such full backtracking
 - Can implement any grammar
- Presented RDA is not general
 - But easy to implement
- Sufficient for grammars where for any non-terminal at most one production can succeed
- The grammar can be rewritten to work with the presented algorithm
 - By left factoring

 $A \rightarrow \alpha \beta 1 \mid \alpha \beta 2$

- The input begins with a nonempty string derived from α , we do not know whether to expand A to $\alpha\beta 1$ or $\alpha\beta 2$.
- We can defer the decision by expanding A to α A'.
- Then, after seeing the input derived from α , we expand A' to $\beta 1$ or $\beta 2$ (left-factored)
- The original productions become:

 $A \rightarrow \alpha A', A' \rightarrow \beta 1 \mid \beta 2$

- Consider a production S → S a bool S₁() { return S() && term(a); } bool S() { return S₁(); }
- S() goes into an infinite loop
- A left-recursive grammar has a non-terminal S
 - $S \rightarrow + Sa$ for some a
- Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

Consider the left-recursive grammar

 $S \rightarrow S \alpha \mid \beta$

- S generates all strings starting with a β and followed by a number of α
- Can rewrite using right-recursion

 $S \rightarrow \beta S'$ $S' \rightarrow \alpha S' \mid \varepsilon$ In general

 $S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$

- All strings derived from S start with one of β_1, \ldots, β_m and continue with several instances of $\alpha_1, \ldots, \alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' | \dots | \beta_m S'$$
$$S' \rightarrow \alpha_1 S' | \dots | \alpha_n S' | \varepsilon$$

General Left Recursion

- The grammar
 - $S \rightarrow A \alpha \mid \delta$ $A \rightarrow S \beta$ is also left-recursive because $S \rightarrow + S \beta \alpha$
- This left-recursion can also be eliminated

- Midterm Next Wednesday (October 21)
- Lexical and Syntactic Analysis

Break Out Session

- S->Aalb
- $A \rightarrow A c | S d | c$
- Remove Recursion.

- S > A a I b.
- A -> b d A' | A'
- A' -> cA' | a d A' | a | C

Simple and general parsing strategy

- Left-recursion must be eliminated first
- ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- In practice, backtracking is eliminated by restricting the grammar

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
 - In practice, LL(1) is used

In recursive-descent

- At each step, many choices of production to use
- Backtracking used to undo bad choices
- In LL(1)
 - At each step, only one choice of production
 - That is
 - When a non-terminal A is leftmost in a derivation
 - The next input symbol is t
 - There is a unique production $A \rightarrow \alpha$ to use
 - Or no production to use (an error state)
- LL(1) is a recursive descent variant without backtracking

- Recall the grammar
 - $E \rightarrow T + E | T$
 - $T \rightarrow int \mid int * T \mid (E)$
- Hard to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- We need to left-factor the grammar

Left-Factoring Example

• Grammar

$$E \rightarrow T + E | T$$

T \rightarrow int | int * T | (E)

Factor out common prefixes of productions

$$E \rightarrow T X$$

$$X \rightarrow + E I \varepsilon$$

$$T \rightarrow (E) I int Y$$

$$Y \rightarrow * T I \varepsilon$$

LL(1) Parsing Table Example

Left-factored grammar

 $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table:

		next input tokens					
Left-most		int	*	+	()	\$
	Е	ТХ			ТХ		
non- terminals	Х			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production E → T X"
 - This can generate an int in the first position
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - Y can be followed by + only if $Y \rightarrow \epsilon$

- Blank entries indicate error situations
- Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

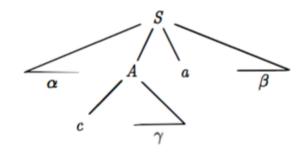
Method similar to recursive descent, except

- For the leftmost non-terminal S
- We look at the next input token a
- And choose the production shown at [S,a]

A stack records frontier of parse tree

- Non-terminals that have yet to be expanded
- Terminals that have yet to match against the input
- Top of stack = leftmost pending terminal or non-terminal
- Reject on reaching error state
- Accept on end of input & empty stack

- During top down parsing, FIRST and FOLLOW allow us to choose which production to apply, based on the next input symbol.
- FIRST(α), α is any string of grammar symbols
 - A set of terminals that begin strings derived from α .
 - If $\alpha \xrightarrow{*} \epsilon$, then ϵ is in FIRST(α).
 - if $\alpha \xrightarrow{*} cY$, the c is in FIRST(α).
- FOLLOW(A), A is a nonterminal
 - the set of terminals that can appear immediately to the right of A.
 - A set of terminals "a" such that S $\stackrel{*}{\rightarrow} \alpha A a \beta$ for some α and β .



Constructing Parsing Tables: The Intuition

- Consider non-terminal A, production A $\rightarrow \alpha$, & token t
- T[A,t] = α in two cases:
- If $\alpha \rightarrow^* t \beta$
 - α can derive a t in the first position
 - We say that $t \in First(\alpha)$
- If $A \rightarrow \alpha$ and $\alpha \rightarrow^* \epsilon$ and $S \rightarrow^* \beta A t \delta$
 - Useful if stack has A, input is t, and A cannot derive t
 - In this case only option is to get rid of A (by deriving ε)
 - We say $t \in Follow(A)$

First Sets. Example

grammar

- $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$
- $Y \rightarrow *T \mid \varepsilon$
- First sets : Breakout room

First(() = { (}
First()) = {) }
First(int) = { int }
First(+) = { + }
First(*) = { * }

First(E) = ? First(T) = ? First(X) = ? First(Y) = ?

Computing Follow Sets

Definition:

Follow(X) = { t | S $\rightarrow^* \beta X t \delta$ }

- Intuition:
 - If X \rightarrow A B then First(B) \subseteq Follow(A) and Follow(X) \subseteq Follow(B)
 - If $B \rightarrow^* \varepsilon$ then Follow(X) \subseteq Follow(A)
 - If S is the start symbol then \$ ∈ Follow(S)

Follow Sets. Example

- Recall the grammar
- $E \rightarrow T X \qquad X \rightarrow + E I \varepsilon$ $T \rightarrow (E) I int Y \qquad Y \rightarrow * T I \varepsilon$
- Follow sets

Follow(+) = { int, (}
Follow(() = { int, (}
Follow(*) = { int, (}
Follow()) = {+,), \$}
Follow(int) = {*, +,), \$}.

Follow(E) = {), \$}
Follow(T) = {+,), \$}
Follow(Y) = {+,), \$}
Follow(X) = {\$,)}

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $t \in First(\alpha)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$, for each $t \in Follow(A)$ do
 - $T[A, t] = \alpha$
 - If $\epsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do
 - T[A, \$] = α

LL(1) Parsing Table Example

- Left-factored grammar
 - $E \rightarrow T X$ $X \rightarrow + E | \varepsilon$ $T \rightarrow (E) | int Y$ $Y \rightarrow * T | \varepsilon$
- The LL(1) parsing table:

Rules: For each production $A \rightarrow \alpha$ in G do: For each terminal $t \in First(\alpha)$ do $T[A, t] = \alpha$ If $\epsilon \in First(\alpha)$, for each $t \in Follow(A)$ do $T[A, t] = \alpha$ If $\epsilon \in First(\alpha)$ and $\$ \in Follow(A)$ do $T[A, \$] = \alpha$

		next input tokens					
Left-most		int	*	+	()	\$
	Е	ТХ			ТХ		
non- terminals	Х			+E		3	3
	Т	int Y			(E)		
	Υ		*T	3		3	3

If $\epsilon \in First(\alpha)$, for each $t \in Follow(A)$ do $T[A, t] = \alpha$

		next input tokens					
Left-most		int	*	+	()	\$
	Е	ТХ			ТХ		
non- terminals	Х			+E		3	3
	Т	int Y			(E)		
	Υ		*Т	3		3	3

 $E \rightarrow T X$ $X \rightarrow + E \mid \varepsilon$ $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

Notes on LL(1) Parsing Tables

- If any entry is multiple defined then G is not LL(1) [Eg: S->Salb]
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - other: e.g., LL(2)
- Most programming language CFGs are not LL(1)
 - too weak
 - However they build on these basic ideas

Bottom-Up Parsing

- Bottom-up parsing is more general than (deterministic) top-down parsing
 - just as efficient
 - Builds on ideas in top-down parsing
- Bottom-up parsers don't need left-factored grammars
- Revert to the "natural" grammar for our example:
 - $E \rightarrow T + E \mid T$ $T \rightarrow int * T \mid int \mid (E) \bullet$
- Consider the string: int * int + int

Bottom-Up Parsing

- Revert to the "natural" grammar for our example:
 E → T + E | T
 - $T \rightarrow int * T | int | (E)$
- Consider the string: int * int + int
- Bottom-up parsing reduces a string to the start symbol by inverting productions:

int *	* int + int	т	\rightarrow	int		
int *	* T + int	т	→	int	*	т
T + i	int	т	→	int		
T + 7	Г	Е	→	т		
T + I	Ξ	Е	→	т +	Е	
Е						

Observation

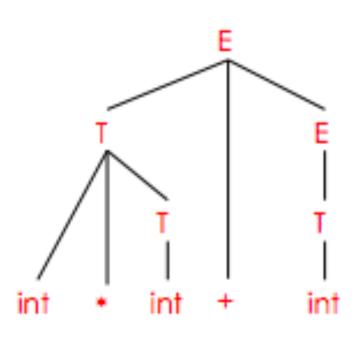
Ε

- Read the productions in reverse (from bottom to top)
- This is a rightmost derivation!

<pre>int * int + int</pre>	$T \rightarrow int$
int * T + int	$T \rightarrow int * T$
T + int	$T \rightarrow int$
т + т	$E \rightarrow T$
T + E	$E \rightarrow T + E$

A bottom-up parser traces a rightmost derivation in reverse

```
int * int + intT \rightarrow intint * T + intT \rightarrow int * TT + intT \rightarrow intT + TE \rightarrow TT + EE \rightarrow T + EE
```



L, R, and all that

- LR parser: "Bottom-up parser"
- L = Left-to-right scan, R = Rightmost derivation
- RR parser: R = Right-to-left scan (from end)
 - nobody uses these
- LL parser: "Top-down parser":
- L = Left-to-right scan: L = Leftmost derivation
- LR(1): LR parser that considers next token (lookahead of 1)
- LR(0): Only considers stack to decide shift/reduce
- SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton
- LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)