
PARSING
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

▪ <id, x> <op, *> <op, %>

▪ Is it a valid token stream in C language?

▪ Is it a valid statement in C language?

Intro to Parsing

▪ Not every strings of tokens are
valid

▪ Parser must distinguish between
valid and invalid token strings.

▪We need
▪ A Language: to describe what is valid

string?
▪ A method: to determine membership

of inputs in this language.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees

Intro to Parsing

▪ Input: if(x==y) 1 else 2;

▪ Parser Input (Lexical Input):

 KEY(IF) ‘(‘ ID(x) OP(‘==‘) ‘)’ INT(1) KEY(ELSE) INT(2) ‘;’

▪ Parser Output IF-THEN-ELSE

==

ID ID

=

INT

=

INT

Intro to Parsing

▪ Not every strings of tokens are
valid

▪ Parser must distinguish between
valid and invalid token strings.

▪We need
▪ A Language: to describe what is valid

string?
▪ Context Free Grammar
▪ Capture Language Syntax

▪ A method: to determine membership
of inputs in this language.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees

Context Free Grammar

▪ A CFG consists of
▪ A set of terminal T
▪ A set of non-terminal N
▪ A start symbol S (S N)
▪ A set of production rules
▪ X -> Y1…..YN

▪ X N
▪

▪ Ex: S -> (S) |
▪ N = {S}
▪ T = { (,) , }

𝜖

𝜖
Yi ϵ {N, T, ε}

𝜀

𝜀

Context Free Grammar

1. Begin with a string with only the start symbol S

2. Replace a non-terminal X with in the string by the RHS of some production rule:

 X->Y1…..Yn

3. Repeat 2 again and again until there are no non-terminals

X1……Xi X Xi+1 …. Xn -> X1……Xi Y1…..Yk Xi+1 …. Xn

For the production rule X -> Y1…..Yk

α0 → α1 → α2 → α3 . . . → αn

α0
* αn, n ≥ 0

Context Free Grammar

▪ Let G be a CFG with start symbol S. Then the language L(G) of G is:

{a1 . . . ai . . . an |∀iai ∈ T ∧ S * a1 . . . ai . . . an}

Context Free Grammar

▪ There are no rules to replace terminals.

▪ Once generated, terminals are permanent

▪ Terminals ought to be tokens of programming languages

▪ Context-free grammars are a natural notation for this recursive structure

Languages and Automata

▪ Formal languages are very important in programming languages

▪ Regular Languages
▪ Weakest formal languages that are widely used
▪ Many applications

▪ Many Languages are not regular

1

1

0

0

Automata that accept odd numbers of 1

How many 1s it has accepted?

Automata do not have any memory

- Only solution is duplicate state

Intro to Parsing

▪ Regular Languages
▪ Weakest formal languages that are widely used
▪ Many applications

▪ Consider the language {(i)i | i 0}
▪ (), (()), ((()))
▪ ((1 + 2) * 3)

▪ Nesting structures
▪ if .. if.. else.. else..

≥
Regular languages
cannot handle well

CFG: Simple Arithmetic expression

E ! E + E
 | E * E
 | (E)
 | id

Languages can be generated: id, (id), (id + id) * id, …

CFG: Exercise

Some Valid Strings are: aba, abcca, …

S → aXa
X → ε |bY

Y → ε |cXc

Derivation

▪ A derivation is a sequence of production
▪ S -> … -> … ->

▪ A derivation can be drawn as a tree
▪ Start symbol is tree’s root
▪ For a production X -> Y1….Yn, add children Y1….Yn to node X

▪ Grammar
▪ E -> E + E | E * E | (E) | id

▪ String
▪ id * id + id

▪ Derivation

 E -> E + E

 -> E * E + E

 -> id * E + E

 -> id * id + E

 -> id * id + id

E

E

E

id

* E

id

+ E

id
Parse
Tree

Parse Tree

▪ A parse tree has
▪ Terminals at the leaves
▪ Non-terminals at the interior nodes

▪ An in-order traversal of the leaves is the original input

▪ The parse tree shows the association of operations, the input string does not

Parse Tree

▪ Left-most derivation
▪ At each step, replace the left-most non-

terminal

E -> E + E

 -> E * E + E

 -> id * E + E

 -> id * id + E

 -> id * id + id

▪ Right-most derivation
▪ At each step, replace the right-most non-

terminal

E -> E + E

 -> E + id

 -> E * E + id

 -> E * id + id

 -> id * id + id

Note that, right-most and left-most derivations have the same parse tree

Ambiguity

▪ Grammar
▪ E -> E + E | E * E | (E) | id

▪ String
▪ id * id + id

E

E

E

id

* E

id

+ E

id

E

E

id

* E

E

id

+ E

id

Ambiguity

▪ A grammar is ambiguous if it has more than one parse tree for a string
▪ There are more than one right-most or left-most derivation for some

string

▪Ambiguity is bad
▪ Leaves meaning for some programs ill-defined

Example of Ambiguous Grammar

▪ S->SS | a | b

Resolving Ambiguity

▪ Most direct way to rewrite the grammar unambiguously

 

id * id + id

E = E′ + E |E′

E′ = id * E′ | id | (E) * E′ | (E)

Resolving Ambiguity

▪ Impossible to convert ambiguous to unambiguous grammar automatically

▪ Instead of rewriting

▪ Use ambiguous grammar

▪ Along with disambiguating rules

▪ Eg, precedence and associativity rules

▪ Enforces precedence of * over +

▪ associativity: %left +

Abstract Syntax Trees

▪ A parser traces the derivation of a sequence of tokens

▪ But the rest of the compiler needs a structural representation of the
program

▪ Abstract Syntax Trees
▪ Like parse trees but ignore some details
▪ Abbreviated as AST

Abstract Syntax Trees

▪ Grammar
▪ E -> int | (E) | E + E

▪String
▪ 5 + (2 + 3)

▪After lexical analysis
▪ Int<5> ‘+’ ‘(‘ Int<2> ‘+’ Int<3> ‘)’

Abstract Syntax Trees: 5 + (2 + 3)

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

Parse Trees

Abstract Syntax Trees: 5 + (2 + 3)

Parse Trees

• Have too much information
• Parentheses
• Single-successor nodes

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

Abstract Syntax Trees: 5 + (2 + 3)

+

Int<5> +

Int<2>

Int<3>

Parse Trees AST

• ASTs capture the nesting structure
• But abstracts from the concrete syntax
• More compact and easier to use

• Have too much information
• Parentheses
• Single-successor nodes

E

E

Int<5>

+ E

(E

E

Int<2>

+ E

Int<3>

)

Error Handling

▪ Purpose of the compiler is
▪ To detect non-valid programs
▪ To translate the valid ones

▪ Many kinds of possible errors (e.g., in C)

Error Kind Example Detected by
Lexical Misspelling of identifiers, keywords, or

operators.
… $... Lexer

Syntax Misplaced operators, semicolons,
braces, switch-case statements, etc.

… x*%... Parser

Semantic Type mismatches between operators
and operands

… int x; y =
x(3);...

Type Checker

Correctness Incorrect reasoning Using = instead
of ==

tester/user

Error Handling

▪ Error Handler should
▪ Discover errors accurately and quickly
▪ Recover from an error quickly
▪ Not slow down compilation of valid code

▪ Types of Error Handling
▪ Panic mode
▪ Error productions
▪ Automatic local or global correction

Panic Mode Error Handling

▪ Panic mode is simplest and most popular method

▪ When an error is detected
▪ Discard tokens until one with a clear role is found

▪ Typically looks for “synchronizing” tokens
▪ Typically the statement of expression terminators
▪ Example: delimiters (; }, etc.)

▪ Continue from there

Panic Mode Error Handling

▪ Example:
▪ (1 + + 2) + 3

▪ Panic-mode recovery:
▪ Skip ahead to the next integer and then continue

▪ Bison: use the special terminal error to describe how much input to skip
▪ E -> int | E + E | (E) | error int | (error)

Normal mode Error mode

Error Productions

▪ Specify known common mistakes in the grammar

▪ Example:
▪ Write 5x instead of 5 * x
▪ Add production rule E -> .. | E E

▪ Disadvantages
▪ complicates the grammar

Error Corrections

▪ Idea: find a correct “nearby” program
▪ Try token insertions and deletions (goal: minimize edit distance)
▪ Exhaustive search

▪ Disadvantages
▪ Hard to implement
▪ Slows down parsing of correct programs
▪ “Nearby” is not necessarily “the intended” program

Error Corrections

▪ Past
▪ Slow recompilation cycle (even once a day)
▪ Find as many errors in once cycle as possible

▪ Disadvantages
▪ Quick recompilation cycle
▪ Users tend to correct one error/cycle
▪ Complex error recovery is less compelling

Parsing algorithm: Recursive Descent Parsing

▪ The parse tree is constructed
▪ From the top
▪ From left to right

▪ Terminals are seen in order of appearance in the token stream

Parsing algorithm: Recursive Descent Parsing

▪ Grammar:
▪ E -> T | T + E
▪ T -> int | int * T | (E)

▪ Token Stream: (int<5>)

▪ Start with top level non-terminal E
▪ Try the rules for E in order

E -> T | T + E

T -> int | int * T | (E)

(int<5>)

Recursive Descent Parsing Example

E

T

int

mismatch: int does not match arrowhead (
backtrack

E -> T | T + E

T -> int | int * T | (E)

(int<5>)

Recursive Descent Parsing Example

E

T

int * T

backtrack

E -> T | T + E

T -> int | int * T | (E)

(int<5>)

Recursive Descent Parsing Example

E

T

(E)

Match! Advance input

E -> T | T + E

T -> int | int * T | (E)

(int<5>)

Recursive Descent Parsing Example

E

T

(E)

Match! Advance input

T

int

E -> T | T + E

T -> int | int * T | (E)

(int<5>)

Recursive Descent Parsing Example

Match! Advance input

E

T

(E)

T

int

𝐸→𝐸′ | 𝐸′+𝐸
𝐸′→−𝐸′ | 𝑖𝑑 | (𝐸)

Input: id + id

A Recursive Descent Parser. Preliminaries

▪ TOKEN be the type of tokens
▪ Special tokens INT, OPEN, CLOSE, PLUS, TIMES

▪ The global next point to the next token

A Top Down Parsing Algorithm

void A() {

 Choose an A-production:

 for (i=1 or k) {

 if (is a nonterminal)

Call ;

 else if (== current input TOKEN tok). /*terminal*/

 next++;

 else

 /* Error */

 }

}

A − > S1S2 . . . Sk;

Si

Si()

Xi

Recursion without
backtracking

A (Limited) Recursive Descent Parser

▪ Define boolean functions that check the token string for a match of
▪ A given token terminal
 bool term (TOKEN tok) { return *next++ == tok; }

▪ The nth production of S:
 bool Sn() { … }

▪ Try all productions of S:
 bool S() { … }

A (Limited) Recursive Descent Parser

▪ For production E → T

 bool E1() { return T(); }

▪ For production E → T + E

 bool E2() { return T() && term(PLUS) && E(); }

▪ For all productions of E (with backtracking)
 bool E() {

 TOKEN *save = next;

 return (next = save, E1()) || (next = save, E2());

 }

Grammar:

E -> T | T + E
T -> int | int * T | (E)

A (Limited) Recursive Descent Parser (4)

▪ Functions for non-terminal T

 bool T1() { return term(INT); }

 bool T2() { return term(INT) && term(TIMES) && T(); }

 bool T3() { return term(OPEN) && E() && term(CLOSE); }

 bool T() {

 TOKEN *save = next;

 return (next = save, T1()) || (next = save, T2()) || (next = save, T3());

 }

Grammar:

E -> T | T + E
T -> int | int * T | (E)

Recursive Descent Parsing

▪ To start the parser
▪ Initialize next to point to first token
▪ Invoke E() (start symbol)

Example

Grammar:
E → T |T + E
T → int | int * T | (E)

Input: (int)

Code:
bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }

bool E2() { return T() && term(PLUS) && E(); }

bool E() {TOKEN *save = next;

 return (next = save, E1()) || (next = save, E2()); }

bool T1() { return term(INT); }

bool T2() { return term(INT) && term(TIMES) && T(); }

bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next;

 return (next = save, T1())

 || (next = save, T2())

 || (next = save, T3()); }

E

T

(E)

T

int

Example

Grammar:
E → T |T + E
T → int | int * T | (E)

Input: int

Code:
bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }

bool E2() { return T() && term(PLUS) && E(); }

bool E() {TOKEN *save = next;

 return (next = save, E1()) || (next = save, E2()); }

bool T1() { return term(INT); }

bool T2() { return term(INT) && term(TIMES) && T(); }

bool T3() { return term(OPEN) && E() && term(CLOSE); }

bool T() { TOKEN *save = next;

 return (next = save, T1())

 || (next = save, T2())

 || (next = save, T3()); }

When Recursive Descent Does Not Work
Grammar:
E → T |T + E
T → int | int * T | (E)

Input: int * int

Code:
bool term(TOKEN tok) { return *next++ == tok; }

bool E1() { return T(); }
bool E2() { return T() && term(PLUS) && E(); }
bool E() {TOKEN *save = next;
 return (next = save, E1()) || (next = save, E2()); }

bool T1() { return term(INT); }
bool T2() { return term(INT) && term(TIMES) && T(); }
bool T3() { return term(OPEN) && E() && term(CLOSE); }
bool T() { TOKEN *save = next;
 return (next = save, T1())
 || (next = save, T2())
 || (next = save, T3()); }

Recursive Descent Parsing: Limitation

▪ If production for non-terminal X succeeds
▪ Cannot backtrack to try different production for X later

▪ General recursive descent algorithms support such full backtracking
▪ Can implement any grammar

▪ Presented RDA is not general
▪ But easy to implement

▪ Sufficient for grammars where for any non-terminal at most one production can
succeed

▪ The grammar can be rewritten to work with the presented algorithm
▪ By left factoring

Left Factoring

 A -> I

▪ The input begins with a nonempty string derived from , we do not know whether to
expand A to .

▪ We can defer the decision by expanding A to A'.

▪ Then, after seeing the input derived from , we expand A' to or (left-factored)

▪ The original productions become:

 A -> , A’ -> I

𝛼𝛽1 𝛼𝛽2

𝛼
𝛼𝛽1 or 𝛼𝛽2

𝛼

𝛼 𝛽1 𝛽2

𝛼𝐴′ 𝛽1 𝛽2

When Recursive Descent Does Not Work

▪ Consider a production S → S a
 bool S1() { return S() && term(a); }
 bool S() { return S1(); }

▪ S() goes into an infinite loop

▪ A left-recursive grammar has a non-terminal S

 S →+ Sα for some α

▪ Recursive descent does not work for left recursive grammar

Elimination of Left Recursion

▪ Consider the left-recursive grammar

S → S α | β

▪ S generates all strings starting with a β and followed by a number of α

▪ Can rewrite using right-recursion

S → β S’

 S’ → α S’ | ε

More Elimination of Left-Recursion

▪ In general
S → S α1 | … | S αn | β1 | … | βm

▪ All strings derived from S start with one of β1,…,βm and continue with
several instances of α1,…,αn

▪ Rewrite as
S → β1 S’ | … | βm S’
S’ → α1 S’ | … | αn S’ | ε

General Left Recursion

▪ The grammar
S → A α | δ
A → S β
is also left-recursive because
S →+ S β α

▪ This left-recursion can also be eliminated

Announcement

▪ Midterm Next Wednesday (October 21)

▪ Lexical and Syntactic Analysis

Break Out Session

▪ S-> Aa | b

▪ A —> A c | S d |

▪ Remove Recursion.

ϵ

▪ S - > A a | b.

▪ A -> b d A’ | A’

▪ A’ -> cA’ | a d A’ | a | ϵ

Summary of Recursive Descent

▪ Simple and general parsing strategy
▪ Left-recursion must be eliminated first
▪ … but that can be done automatically

▪ Unpopular because of backtracking
▪ Thought to be too inefficient

▪ In practice, backtracking is eliminated by restricting the grammar

Predictive Parsers

▪ Like recursive-descent but parser can “predict” which production to use
▪ By looking at the next few tokens
▪ No backtracking

▪ Predictive parsers accept LL(k) grammars
▪ L means “left-to-right” scan of input
▪ L means “leftmost derivation”
▪ k means “predict based on k tokens of lookahead”
▪ In practice, LL(1) is used

LL(1) vs. Recursive Descent

▪ In recursive-descent
▪ At each step, many choices of production to use
▪ Backtracking used to undo bad choices

▪ In LL(1)
▪ At each step, only one choice of production
▪ That is

▪ When a non-terminal A is leftmost in a derivation
▪ The next input symbol is t
▪ There is a unique production A → α to use

▪ Or no production to use (an error state)

▪ LL(1) is a recursive descent variant without backtracking

Predictive Parsing and Left Factoring

▪ Recall the grammar
E → T + E | T
T → int | int * T | (E)

▪ Hard to predict because
▪ For T two productions start with int
▪ For E it is not clear how to predict

▪We need to left-factor the grammar

Left-Factoring Example

▪ Grammar
E → T + E | T
T → int | int * T | (E)

▪ Factor out common prefixes of productions
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

LL(1) Parsing Table Example

▪ Left-factored grammar
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

▪ The LL(1) parsing table:

Left-most

non-
terminals

next input tokens
int * + () $

E TX TX
X +E ε ε
T int Y (E)
Y *T ε ε ε

LL(1) Parsing Table Example (Cont.)

▪ Consider the [E, int] entry
▪ “When current non-terminal is E and next input is int, use production

E → T X”
▪ This can generate an int in the first position

▪Consider the [Y,+] entry
▪ “When current non-terminal is Y and current token is +, get rid of Y”
▪ Y can be followed by + only if Y → ε

LL(1) Parsing Tables. Errors

▪ Blank entries indicate error situations

▪ Consider the [E,*] entry
▪ “There is no way to derive a string starting with * from non-terminal

E”

Using Parsing Tables

▪ Method similar to recursive descent, except
▪ For the leftmost non-terminal S
▪ We look at the next input token a
▪ And choose the production shown at [S,a]

▪ A stack records frontier of parse tree
▪ Non-terminals that have yet to be expanded
▪ Terminals that have yet to match against the input
▪ Top of stack = leftmost pending terminal or non-terminal

▪ Reject on reaching error state

▪ Accept on end of input & empty stack

First & Follow

▪ During top down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol.

▪ FIRST(), is any string of grammar symbols
▪ A set of terminals that begin strings derived from .
▪ If , then is in FIRST().
▪ if , the c is in FIRST().

▪ FOLLOW(A), A is a nonterminal
▪ the set of terminals that can appear immediately to the right of A.
▪ A set of terminals “a” such that S for some and .

𝛼 𝛼
𝛼

𝛼 ∗ 𝜖 𝜖 𝛼
𝛼 ∗ 𝑐𝑌 𝛼

∗ 𝛼𝐴𝑎𝛽 𝛼 𝛽

Constructing Parsing Tables: The Intuition

▪ Consider non-terminal A, production A → α, & token t

▪ T[A,t] = α in two cases:

▪ If α →* t β
▪ α can derive a t in the first position
▪We say that t ∈ First(α)

▪ If A → α and α →* ε and S →* β A t δ
▪ Useful if stack has A, input is t, and A cannot derive t
▪ In this case only option is to get rid of A (by deriving ε)
▪We say t ∈ Follow(A)

First Sets. Example

▪ grammar
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

▪ First sets : Breakout room

First(() = { (}
First()) = {) }
First(int) = { int }
First(+) = { + }
First(*) = { * }

First(E) = ?
First (T) = ?
First(X) = ?
First(Y) = ?

Computing Follow Sets

▪ Definition:

 Follow(X) = { t | S →* β X t δ }

▪ Intuition:
▪ If X → A B then First(B) ⊆ Follow(A) and
 Follow(X) ⊆ Follow(B)

▪ If B →* ε then Follow(X) ⊆ Follow(A)

▪ If S is the start symbol then $ ∈ Follow(S)

Follow Sets. Example

▪ Recall the grammar
 E → T X X → + E | ε
 T → (E) | int Y Y → * T | ε

▪ Follow sets
 Follow(+) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(*) = { int, (} Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}. Follow(X) = {$,) }

Constructing LL(1) Parsing Tables

▪ Construct a parsing table T for CFG G

▪ For each production A → α in G do:
▪ For each terminal t ∈ First(α) do
▪ T[A, t] = α

▪ If ε ∈ First(α), for each t ∈ Follow(A) do
▪ T[A, t] = α

▪ If ε ∈ First(α) and $ ∈ Follow(A) do
▪ T[A, $] = α

LL(1) Parsing Table Example

▪ Left-factored grammar
E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

▪ The LL(1) parsing table:

Left-most

non-
terminals

next input tokens
int * + () $

E TX TX
X +E ε ε
T int Y (E)
Y *T ε ε ε

Rules:
For each production A → α in G do:

For each terminal t ∈ First(α) do
T[A, t] = α

If ε ∈ First(α), for each t ∈ Follow(A) do
T[A, t] = α

 If ε ∈ First(α) and $ ∈ Follow(A) do
T[A, $] = α

 Follow(+) = { int, (}
 Follow(() = { int, (} Follow(E) = {), $}
 Follow(*) = { int, (} Follow(T) = {+,) , $}
 Follow()) = {+,) , $} Follow(Y) = {+,) , $}
 Follow(int) = {*, +,) , $}. Follow(X) = {$,) }

Left-most

non-
terminals

next input tokens
int * + () $

E TX TX
X +E ε ε
T int Y (E)
Y *T ε ε ε

E → T X
X → + E | ε
T → (E) | int Y
Y → * T | ε

If ε ∈ First(α), for each t ∈ Follow(A) do
T[A, t] = α

Notes on LL(1) Parsing Tables

▪ If any entry is multiple defined then G is not LL(1) [Eg: S->Sa|b]
▪ If G is ambiguous
▪ If G is left recursive
▪ If G is not left-factored
▪ other: e.g., LL(2)

▪ Most programming language CFGs are not LL(1)
▪ too weak
▪ However they build on these basic ideas

Bottom-Up Parsing

▪ Bottom-up parsing is more general than (deterministic) top-down parsing
▪ just as efficient
▪ Builds on ideas in top-down parsing

▪ Bottom-up parsers don’t need left-factored grammars

▪ Revert to the “natural” grammar for our example:
E → T + E | T
T → int * T | int | (E) •

▪ Consider the string: int * int + int

Bottom-Up Parsing

▪ Revert to the “natural” grammar for our example:
E → T + E | T
T → int * T | int | (E) •

▪ Consider the string: int * int + int

▪ Bottom-up parsing reduces a string to the start symbol by inverting productions:
 int * int + int T → int

 int * T + int T → int * T

 T + int T → int

 T + T E → T

 T + E E → T + E

 E

Observation

▪ Read the productions in reverse (from bottom to top)

▪ This is a rightmost derivation!

 int * int + int T → int

 int * T + int T → int * T

 T + int T → int

 T + T E → T

 T + E E → T + E

 E

Bottom-Up Parsing

▪ A bottom-up parser traces a rightmost derivation in reverse

 int * int + int T → int
 int * T + int T → int * T
 T + int T → int
 T + T E → T
 T + E E → T + E
 E

L, R, and all that

▪ LR parser: “Bottom-up parser”

▪ L = Left-to-right scan, R = Rightmost derivation

▪ RR parser: R = Right-to-left scan (from end)
▪ nobody uses these

▪ LL parser: “Top-down parser”:

▪ L = Left-to-right scan: L = Leftmost derivation

▪ LR(1): LR parser that considers next token (lookahead of 1)

▪ LR(0): Only considers stack to decide shift/reduce

▪ SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton

▪ LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)

