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▪ <id, x> <op, *> <op, %>

▪ Is it a valid token stream in C language?

▪ Is it a valid statement in C language?



Intro to Parsing

▪ Not every strings of tokens are 
valid

▪ Parser must distinguish between 
valid and invalid token strings. 

▪We need
▪ A Language: to describe what is valid 

string?
▪ A method: to determine membership 

of inputs in this language.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees



Intro to Parsing

▪ Input: if(x==y) 1 else 2;

▪ Parser Input (Lexical Input):

  KEY(IF) ‘(‘ ID(x) OP(‘==‘) ‘)’ INT(1) KEY(ELSE) INT(2) ‘;’

▪ Parser Output IF-THEN-ELSE

==

ID ID

=

INT

=

INT



Intro to Parsing

▪ Not every strings of tokens are 
valid

▪ Parser must distinguish between 
valid and invalid token strings. 

▪We need
▪ A Language: to describe what is valid 

string?
▪ Context Free Grammar
▪ Capture Language Syntax

▪ A method: to determine membership 
of inputs in this language.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees



Context Free Grammar

▪ A CFG consists of
▪ A set of terminal T
▪ A set of non-terminal N
▪ A start symbol S (S  N)
▪ A set of production rules
▪ X -> Y1…..YN

▪ X  N
▪

▪ Ex: S -> ( S ) | 
▪ N = {S}
▪ T = { ( , ) , }

𝜖

𝜖
Yi ϵ {N, T, ε}

𝜀

𝜀



Context Free Grammar

1. Begin with a string with only the start symbol S

2. Replace a non-terminal X with in the string by the RHS of some production rule:                 

 X->Y1…..Yn

3. Repeat 2 again and again until there are no non-terminals

X1……Xi X Xi+1 …. Xn -> X1……Xi Y1…..Yk Xi+1 …. Xn 

For the production rule X -> Y1…..Yk

                                

α0 → α1 → α2 → α3 . . . → αn

α0
* αn, n ≥ 0



Context Free Grammar

▪ Let G be a CFG with start symbol S. Then the language L(G) of G is:

{a1 . . . ai . . . an |∀iai ∈ T ∧ S * a1 . . . ai . . . an}



Context Free Grammar

▪ There are no rules to replace terminals.

▪ Once generated, terminals are permanent

▪ Terminals ought to be tokens of programming languages

▪ Context-free grammars are a natural notation for this recursive structure



Languages and Automata

▪ Formal languages are very important in programming languages 

▪ Regular Languages
▪ Weakest formal languages that are widely used
▪ Many applications

▪ Many Languages are not regular



1

1

0

0

Automata that accept odd numbers of 1

How many 1s it has accepted?

Automata do not have any memory

- Only solution is duplicate state



Intro to Parsing

▪ Regular Languages
▪ Weakest formal languages that are widely used
▪ Many applications

▪ Consider the language {(i )i | i  0}
▪ (), (( )), ((( )))
▪ ((1 + 2) * 3)

▪ Nesting structures 
▪ if ..  if..  else.. else..

≥
Regular languages 
cannot handle well



CFG: Simple Arithmetic expression

E ! E + E
   | E * E
   | ( E )
   | id

Languages can be generated: id, ( id ), ( id + id ) * id, …



CFG: Exercise

Some Valid Strings are: aba, abcca, …

S → aXa
X → ε |bY

Y → ε |cXc



Derivation

▪ A derivation is a sequence of production
▪ S -> … -> … -> 

▪ A derivation can be drawn as a tree
▪ Start symbol is tree’s root
▪ For a production X -> Y1….Yn, add children Y1….Yn to node X



▪ Grammar
▪ E -> E + E | E * E | (E) | id

▪ String
▪ id * id + id

▪ Derivation

 E -> E + E

   -> E * E + E

   -> id * E + E

   -> id * id + E

   -> id * id + id

E

E

E

id

* E

id

+ E

id
Parse
Tree



Parse Tree

▪ A parse tree has
▪ Terminals at the leaves
▪ Non-terminals at the interior nodes

▪ An in-order traversal of the leaves is the original input

▪ The parse tree shows the association of operations, the input string does not



Parse Tree

▪ Left-most derivation
▪ At each step, replace the left-most non-

terminal

E -> E + E

   -> E * E + E

   -> id * E + E

   -> id * id + E

   -> id * id + id

▪ Right-most derivation
▪ At each step, replace the right-most non-

terminal

E -> E + E

   -> E + id

   -> E * E + id

   -> E * id + id

   -> id * id + id

Note that, right-most and left-most derivations have the same parse tree



Ambiguity

▪ Grammar
▪ E -> E + E | E * E | (E) | id

▪ String
▪ id * id + id

E

E

E

id

* E

id

+ E

id

E

E

id

* E

E

id

+ E

id



Ambiguity

▪ A grammar is ambiguous if it has more than one parse tree for a string
▪ There are more than one right-most or left-most derivation for some 

string

▪Ambiguity is bad
▪ Leaves meaning for some programs ill-defined



Example of Ambiguous Grammar

▪ S->SS | a | b



Resolving Ambiguity

▪ Most direct way to rewrite the grammar unambiguously

 

id * id + id

E = E′ + E |E′ 

E′ = id * E′ | id | (E) * E′ | (E)



Resolving Ambiguity

▪ Impossible to convert ambiguous to unambiguous grammar automatically

▪ Instead of rewriting

▪ Use ambiguous grammar

▪ Along with disambiguating rules

▪ Eg, precedence and associativity rules 

▪ Enforces precedence of * over +

▪ associativity: %left + 



Abstract Syntax Trees

▪ A parser traces the derivation of a sequence of tokens

▪ But the rest of the compiler needs a structural representation of the 
program

▪ Abstract Syntax Trees
▪ Like parse trees but ignore some details
▪ Abbreviated as AST



Abstract Syntax Trees

▪ Grammar
▪ E -> int | ( E ) | E + E

▪String
▪ 5 + (2 + 3)

▪After lexical analysis
▪ Int<5> ‘+’ ‘(‘ Int<2> ‘+’ Int<3> ‘)’



Abstract Syntax Trees: 5 + ( 2 + 3)

E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)

Parse Trees



Abstract Syntax Trees: 5 + ( 2 + 3)

Parse Trees

• Have too much information
• Parentheses
• Single-successor nodes

E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)



Abstract Syntax Trees: 5 + ( 2 + 3)

+

Int<5> +

Int<2>

Int<3>

Parse Trees AST

• ASTs capture the nesting structure
• But abstracts from the concrete syntax
• More compact and easier to use

• Have too much information
• Parentheses
• Single-successor nodes

E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)



Error Handling

▪ Purpose of the compiler is 
▪ To detect non-valid programs
▪ To translate the valid ones

▪ Many kinds of possible errors (e.g., in C)

Error Kind Example Detected by
Lexical Misspelling of identifiers, keywords, or 

operators.
… $ ... Lexer

Syntax Misplaced operators, semicolons, 
braces,  switch-case statements, etc.

… x*%... Parser

Semantic Type mismatches between operators 
and operands

… int x; y = 
x(3);...

Type Checker

Correctness Incorrect reasoning Using = instead 
of ==

tester/user



Error Handling

▪ Error Handler should
▪ Discover errors accurately and quickly
▪ Recover from an error quickly
▪ Not slow down compilation of valid code

▪ Types of Error Handling
▪ Panic mode
▪ Error productions
▪ Automatic local or global correction



Panic Mode Error Handling

▪ Panic mode is simplest and most popular method

▪ When an error is detected
▪ Discard tokens until one with a clear role is found

▪ Typically looks for “synchronizing” tokens
▪ Typically the statement of expression terminators
▪ Example:  delimiters (; }, etc.)

▪ Continue from there



Panic Mode Error Handling

▪ Example:
▪ (1 + + 2 ) + 3

▪ Panic-mode recovery:
▪ Skip ahead to the next integer and then continue

▪ Bison: use the special terminal error to describe how much input to skip
▪ E -> int | E + E | ( E ) | error int | ( error )

Normal mode Error mode



Error Productions

▪ Specify known common mistakes in the grammar

▪ Example:
▪ Write 5x instead of 5 * x
▪ Add production rule E -> .. | E E

▪ Disadvantages
▪ complicates the grammar



Error Corrections

▪ Idea: find a correct “nearby” program
▪ Try token insertions and deletions (goal: minimize edit distance)
▪ Exhaustive search

▪ Disadvantages
▪ Hard to implement
▪ Slows down parsing of correct programs
▪ “Nearby” is not necessarily “the intended” program



Error Corrections

▪ Past
▪ Slow recompilation cycle (even once a day)
▪ Find as many errors in once cycle as possible

▪ Disadvantages
▪ Quick recompilation cycle
▪ Users tend to correct one error/cycle
▪ Complex error recovery is less compelling



Parsing algorithm: Recursive Descent Parsing

▪ The parse tree is constructed 
▪ From the top
▪ From left to right

▪ Terminals are seen in order of appearance in the token stream



Parsing algorithm: Recursive Descent Parsing

▪ Grammar:
▪ E -> T | T + E
▪ T -> int | int * T | ( E )

▪ Token Stream: ( int<5> )

▪ Start with top level non-terminal E
▪ Try the rules for E in order



E -> T | T + E

T -> int | int * T | ( E )

( int<5> )

Recursive Descent Parsing Example

E

T

int

mismatch: int does not match arrowhead (
backtrack



E -> T | T + E

T -> int | int * T | ( E )

( int<5> )

Recursive Descent Parsing Example

E

T

int * T

backtrack



E -> T | T + E

T -> int | int * T | ( E )

( int<5> )

Recursive Descent Parsing Example

E

T

( E )

Match! Advance input



E -> T | T + E

T -> int | int * T | ( E )

( int<5> )

Recursive Descent Parsing Example

E

T

( E )

Match! Advance input

T

int



E -> T | T + E

T -> int | int * T | ( E )

( int<5> )

Recursive Descent Parsing Example

Match! Advance input

E

T

( E )

T

int



𝐸→𝐸′  |  𝐸′+𝐸                                                                                                            
𝐸′→−𝐸′  |  𝑖𝑑  |  (𝐸)

Input: id + id



A Recursive Descent Parser. Preliminaries 

▪ TOKEN be the type of tokens 
▪  Special tokens INT, OPEN, CLOSE, PLUS, TIMES 

▪ The global next point to the next token 



A Top Down Parsing Algorithm 

void A() {


  Choose an A-production: 


  for (i=1 or k) {


     if (  is a nonterminal)


Call ;


      else if (  == current input TOKEN tok). /*terminal*/


             next++;


      else


           /* Error */


  } 


} 

A − > S1S2 . . . Sk;

Si

Si()

Xi

Recursion without 
backtracking



A (Limited) Recursive Descent Parser 

▪ Define boolean functions that check the token string for a match of 
▪ A given token terminal 
 bool term (TOKEN tok) { return *next++ == tok; } 


▪ The nth production of S: 
  bool Sn() { … } 


▪ Try all productions of S: 
  bool S() { … } 



A (Limited) Recursive Descent Parser 

▪ For production E → T 

  bool E1() { return T(); } 


▪ For production E → T + E 

  bool E2() { return T() && term(PLUS) && E(); } 


▪ For all productions of E (with backtracking) 
  bool E() { 

    TOKEN *save = next; 

    return (next = save, E1( )) || (next = save, E2( )); 

   }

Grammar: 

E -> T | T + E
T -> int | int * T | ( E )



A (Limited) Recursive Descent Parser (4) 

▪ Functions for non-terminal T 

  bool T1() { return term(INT); } 


  bool T2() { return term(INT) && term(TIMES) && T(); } 


  bool T3() { return term(OPEN) && E() && term(CLOSE); } 


  bool T() { 

         TOKEN *save = next; 

         return (next = save, T1())   || (next = save, T2())   || (next = save, T3()); 

  } 

Grammar: 

E -> T | T + E
T -> int | int * T | ( E )



Recursive Descent Parsing

▪ To start the parser 
▪ Initialize next to point to first token 
▪ Invoke E()  (start symbol)



Example

Grammar:
E → T |T + E 
T → int | int * T | ( E ) 

Input: ( int ) 

Code: 
bool term(TOKEN tok) { return *next++ == tok; } 


bool E1() { return T(); } 

bool E2() { return T() && term(PLUS) && E(); } 

bool E() {TOKEN *save = next; 

         return (next = save, E1()) || (next = save, E2()); } 


bool T1() { return term(INT); } 

bool T2() { return term(INT) && term(TIMES) && T(); } 

bool T3() { return term(OPEN) && E() && term(CLOSE); } 

bool T() { TOKEN *save = next; 

     return (next = save, T1()) 

         || (next = save, T2()) 

         || (next = save, T3()); } 

E

T

( E )

T

int



Example

Grammar:
E → T |T + E 
T → int | int * T | ( E ) 

Input: int 

Code: 
bool term(TOKEN tok) { return *next++ == tok; } 


bool E1() { return T(); } 

bool E2() { return T() && term(PLUS) && E(); } 

bool E() {TOKEN *save = next; 

         return (next = save, E1()) || (next = save, E2()); } 


bool T1() { return term(INT); } 

bool T2() { return term(INT) && term(TIMES) && T(); } 

bool T3() { return term(OPEN) && E() && term(CLOSE); } 

bool T() { TOKEN *save = next; 

     return (next = save, T1()) 

         || (next = save, T2()) 

         || (next = save, T3()); } 



When Recursive Descent Does Not Work 
Grammar:
E → T |T + E 
T → int | int * T | ( E )      

Input: int * int

Code: 
bool term(TOKEN tok) { return *next++ == tok; } 

bool E1() { return T(); } 
bool E2() { return T() && term(PLUS) && E(); } 
bool E() {TOKEN *save = next; 
         return (next = save, E1()) || (next = save, E2()); } 

bool T1() { return term(INT); } 
bool T2() { return term(INT) && term(TIMES) && T(); } 
bool T3() { return term(OPEN) && E() && term(CLOSE); } 
bool T() { TOKEN *save = next; 
     return (next = save, T1()) 
         || (next = save, T2()) 
         || (next = save, T3()); } 



Recursive Descent Parsing: Limitation

▪ If production for non-terminal X succeeds
▪ Cannot backtrack to try different production for X later

▪ General recursive descent algorithms support such full backtracking
▪ Can implement any grammar

▪ Presented RDA is not general
▪ But easy to implement

▪ Sufficient for grammars where for any non-terminal at most one production can 
succeed

▪ The grammar can be rewritten to work with the presented algorithm
▪ By left factoring 



Left Factoring

   A -> I  

▪ The input begins with a nonempty string derived from , we do not know whether to 
expand A to . 

▪ We can defer the decision by expanding A to A'. 

▪ Then, after seeing the input derived from , we expand A' to  or (left-factored)

▪  The original productions become: 

     A -> , A’ -> I  

𝛼𝛽1  𝛼𝛽2

𝛼
𝛼𝛽1 or 𝛼𝛽2

𝛼

𝛼 𝛽1 𝛽2  

𝛼𝐴′  𝛽1  𝛽2



When Recursive Descent Does Not Work 

▪ Consider a production S → S a 
  bool S1() { return S() && term(a); } 
  bool S() { return S1(); } 

▪ S() goes into an infinite loop 

▪ A left-recursive grammar has a non-terminal S 

   S →+ Sα for some α 

▪ Recursive descent does not work for left recursive grammar



Elimination of Left Recursion

▪ Consider the left-recursive grammar 

S → S α | β

▪ S generates all strings starting with a β and followed by a number of α 

▪  Can rewrite using right-recursion 

S → β S’ 

       S’ → α S’ | ε



More Elimination of Left-Recursion

▪ In general 
S → S α1 | … | S αn | β1 | … | βm 

▪ All strings derived from S start with one of β1,…,βm and continue with 
several instances of α1,…,αn 

▪ Rewrite as 
S → β1 S’ | … | βm S’ 
S’ → α1 S’ | … | αn S’ | ε



General Left Recursion

▪ The grammar 
S → A α | δ 
A → S β 
is also left-recursive because 
S →+ S β α 

▪ This left-recursion can also be eliminated 



Announcement

▪ Midterm Next Wednesday (October 21)

▪ Lexical and Syntactic Analysis



Break Out Session

▪ S-> Aa | b

▪ A —> A c | S d |     

▪ Remove Recursion. 

ϵ



▪ S - > A a | b.                 

▪ A -> b d A’ | A’

▪ A’ -> cA’ | a d A’  | a |      ϵ



Summary of Recursive Descent

▪ Simple and general parsing strategy 
▪ Left-recursion must be eliminated first 
▪ … but that can be done automatically 

▪ Unpopular because of backtracking 
▪ Thought to be too inefficient 

▪ In practice, backtracking is eliminated by restricting the grammar



Predictive Parsers

▪ Like recursive-descent but parser can “predict” which production to use 
▪ By looking at the next few tokens 
▪ No backtracking 

▪ Predictive parsers accept LL(k) grammars 
▪ L means “left-to-right” scan of input 
▪ L means “leftmost derivation” 
▪ k means “predict based on k tokens of lookahead” 
▪ In practice, LL(1) is used



LL(1) vs. Recursive Descent

▪ In recursive-descent
▪ At each step, many choices of production to use 
▪ Backtracking used to undo bad choices 

▪ In LL(1)
▪ At each step, only one choice of production 
▪ That is 

▪ When a non-terminal A is leftmost in a derivation 
▪ The next input symbol is t 
▪ There is a unique production A → α to use 

▪ Or no production to use (an error state) 

▪ LL(1) is a recursive descent variant without backtracking



Predictive Parsing and Left Factoring

▪ Recall the grammar 
E → T + E | T 
T → int | int * T | ( E ) 

▪ Hard to predict because 
▪ For T two productions start with int 
▪ For E it is not clear how to predict 

▪We need to left-factor the grammar



Left-Factoring Example

▪ Grammar 
E → T + E | T 
T → int | int * T | ( E ) 

▪ Factor out common prefixes of productions 
E → T X 
X → + E | ε 
T → ( E ) | int Y 
Y → * T | ε



LL(1) Parsing Table Example

▪ Left-factored grammar 
E → T X 
X → + E | ε 
T → ( E ) | int Y 
Y → * T | ε 

▪ The LL(1) parsing table:

Left-most

non-
terminals

next input tokens
int * + ( ) $

E TX TX
X +E ε ε 
T int Y ( E )
Y *T ε ε ε 



LL(1) Parsing Table Example (Cont.) 

▪ Consider the [E, int] entry 
▪ “When current non-terminal is E and next input is int, use production 

E → T X” 
▪ This can generate an int in the first position 

▪Consider the [Y,+] entry 
▪ “When current non-terminal is Y and current token is +, get rid of Y” 
▪ Y can be followed by + only if Y → ε



LL(1) Parsing Tables. Errors 

▪ Blank entries indicate error situations 

▪ Consider the [E,*] entry 
▪ “There is no way to derive a string starting with * from non-terminal 

E”



Using Parsing Tables 

▪ Method similar to recursive descent, except
▪ For the leftmost non-terminal S 
▪ We look at the next input token a 
▪ And choose the production shown at [S,a] 

▪ A stack records frontier of parse tree 
▪ Non-terminals that have yet to be expanded 
▪ Terminals that have yet to match against the input 
▪ Top of stack = leftmost pending terminal or non-terminal 

▪ Reject on reaching error state 

▪ Accept on end of input & empty stack 



First & Follow

▪ During top down parsing, FIRST and FOLLOW allow us to choose which production to 
apply, based on the next input symbol. 

▪ FIRST( ),  is any string of grammar symbols
▪ A set of terminals that begin strings derived from . 
▪ If , then is in FIRST( ). 
▪ if , the c is in FIRST( ). 

▪ FOLLOW(A), A is a nonterminal 
▪ the set of terminals that can appear immediately to the right of A. 
▪ A set of terminals “a” such that S  for some  and . 

𝛼 𝛼
𝛼

𝛼 ∗ 𝜖 𝜖  𝛼
𝛼 ∗ 𝑐𝑌 𝛼

∗ 𝛼𝐴𝑎𝛽 𝛼 𝛽



Constructing Parsing Tables: The Intuition 

▪ Consider non-terminal A, production A → α, & token t 

▪  T[A,t] = α in two cases: 

▪ If α →* t β 
▪ α can derive a t in the first position 
▪We say that t ∈ First(α) 

▪ If A → α and α →* ε and S →* β A t δ 
▪ Useful if stack has A, input is t, and A cannot derive t 
▪ In this case only option is to get rid of A (by deriving ε) 
▪We say t ∈ Follow(A) 



First Sets. Example

▪ grammar 
E → T X 
X → + E | ε 
T → ( E ) | int Y 
Y → * T | ε 

▪ First sets : Breakout room

First( ( ) = { ( } 
First( ) ) = { ) } 
First( int) = { int } 
First( + ) = { + } 
First( * ) = { * }

First( E ) =  ?
First ( T ) = ?
First( X ) =  ?
First( Y ) =  ?



Computing Follow Sets

▪ Definition: 

  Follow(X) = { t | S →* β X t δ } 

▪ Intuition:
▪ If X → A B then First(B) ⊆ Follow(A) and 
                  Follow(X) ⊆ Follow(B) 

▪ If B →* ε then Follow(X) ⊆ Follow(A) 

▪ If S is the start symbol then $ ∈ Follow(S)



Follow Sets. Example

▪ Recall the grammar 
  E → T X X → + E | ε 
  T → ( E ) | int Y Y → * T | ε 

▪  Follow sets 
    Follow( + ) = { int, ( } 
  Follow( ( ) = { int, ( } Follow( E ) = {), $} 
  Follow( * ) = { int, ( } Follow( T ) = {+, ) , $} 
  Follow( ) ) = {+, ) , $} Follow( Y ) = {+, ) , $} 
  Follow( int) = {*, +, ) , $}. Follow( X ) = {$, ) } 



Constructing LL(1) Parsing Tables

▪ Construct a parsing table T for CFG G 

▪ For each production A → α in G do: 
▪ For each terminal t ∈ First(α) do 
▪ T[A, t] = α 

▪ If ε ∈ First(α), for each t ∈ Follow(A) do 
▪ T[A, t] = α 

▪  If ε ∈ First(α) and $ ∈ Follow(A) do 
▪ T[A, $] = α



LL(1) Parsing Table Example

▪ Left-factored grammar 
E → T X 
X → + E | ε 
T → ( E ) | int Y 
Y → * T | ε 

▪ The LL(1) parsing table:

Left-most

non-
terminals

next input tokens
int * + ( ) $

E TX TX
X +E ε ε 
T int Y ( E )
Y *T ε ε ε 

Rules:
For each production A → α in G do: 

For each terminal t ∈ First(α) do 
T[A, t] = α 

If ε ∈ First(α), for each t ∈ Follow(A) do 
T[A, t] = α 

 If ε ∈ First(α) and $ ∈ Follow(A) do 
T[A, $] = α



   Follow( + ) = { int, ( } 
  Follow( ( ) = { int, ( } Follow( E ) = {), $} 
  Follow( * ) = { int, ( } Follow( T ) = {+, ) , $} 
  Follow( ) ) = {+, ) , $} Follow( Y ) = {+, ) , $} 
  Follow( int) = {*, +, ) , $}. Follow( X ) = {$, ) }

Left-most

non-
terminals

next input tokens
int * + ( ) $

E TX TX
X +E ε ε 
T int Y ( E )
Y *T ε ε ε 

E → T X 
X → + E | ε 
T → ( E ) | int Y 
Y → * T | ε 

If ε ∈ First(α), for each t ∈ Follow(A) do 
T[A, t] = α 



Notes on LL(1) Parsing Tables

▪ If any entry is multiple defined then G is not LL(1) [Eg: S->Sa|b]
▪ If G is ambiguous 
▪ If G is left recursive 
▪ If G is not left-factored 
▪ other: e.g., LL(2)

▪ Most programming language CFGs are not LL(1)
▪ too weak
▪ However they build on these basic ideas



Bottom-Up Parsing

▪ Bottom-up parsing is more general than (deterministic) top-down parsing 
▪ just as efficient 
▪ Builds on ideas in top-down parsing 

▪ Bottom-up parsers don’t need left-factored grammars

▪ Revert to the “natural” grammar for our example: 
E → T + E | T 
T → int * T | int | (E) • 

▪ Consider the string: int * int + int



Bottom-Up Parsing

▪ Revert to the “natural” grammar for our example: 
E → T + E | T 
T → int * T | int | (E) • 

▪ Consider the string: int * int + int

▪ Bottom-up parsing reduces a string to the start symbol by inverting productions: 
    int * int + int T → int 

    int * T  + int T → int * T 

    T + int T → int 

    T + T E → T 

    T + E E → T + E 

    E



Observation

▪ Read the productions in reverse (from bottom to top) 

▪ This is a rightmost derivation! 

    int * int + int T → int 

    int * T  + int T → int * T 

    T + int T → int 

    T + T E → T 

    T + E E → T + E 

    E



Bottom-Up Parsing

▪ A bottom-up parser traces a rightmost derivation in reverse 

  int * int + int T → int 
  int * T  + int  T → int * T 
  T + int T → int 
  T + T E → T 
  T + E E → T + E 
  E



L, R, and all that

▪ LR parser: “Bottom-up parser”

▪ L = Left-to-right scan, R = Rightmost derivation 

▪ RR parser: R = Right-to-left scan (from end) 
▪ nobody uses these 

▪ LL parser: “Top-down parser”: 

▪ L = Left-to-right scan: L = Leftmost derivation 

▪ LR(1): LR parser that considers next token (lookahead of 1) 

▪ LR(0): Only considers stack to decide shift/reduce 

▪ SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton 

▪ LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)


