PLT (Fall 2019)
Baishakhi Ray

High-level representation
—Control flow 1s implicit in an AST

Low-level representation:

—Use a
—Nodes represent statements (low-level linear IR)
—Edges represent explicit flow of control

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

a :=0
| a.; =10 b e
b :=a *b
2
3 Ll: ¢ := b/d S ey sy
4 if ¢ < x goto L2 c < x°?
5 e :=b / c
f :=e +1 :
6 e —
7 L2: g := £ f e
] h L o | :
9 if e > 0 goto 13 g =
10 goto L1 h3=t‘§
11 L3: return Ife>07
Yes No
10 1"
goto return

b/ c
+ 1

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

° A 1s a sequence of straight line code that can be entered only
at the begimning and exited only at the end

Building basic blocks

— Identify
AR s XS
V{ h:i=t- %’» }I{ —The first instruction in a procedure, or
SRS, —The target of any branch, or

—An instruction immediately following a branch (implicit target)

— Gobble all subsequent instructions until the next leader

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

1 ar =il Leaders?
5 b :=a *b —1{1,3,5,7,10, 11}
Rl rens =g
4 if ¢ < x goto L2

e :=b / c Blocks?
> f :=e +1 S P
SEeT —{3,4)
7 L2: Qe f —{5,6}
g Boimbrg —{7,8,9}
9 if e > 0 goto L3 — {10}
10 goto L1 oL

11 L3: return

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Construction
-Each CFG node represents a basic

block
-There is an edge from node i to j if
-Last statement of block i branches | goto L1: | goto L1:
to the first statement of j, or i L

] L1
-Block i does not end with an
unconditional branch and is
immediately followed in program

order by block j (fall through)

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Construction
-Each CFG node represents a basic
block
-There is an edge from node i to j if
-Last statement of block i branches
to the first statement of j, or
-Block i does not end with an
unconditional branch and is
immediately followed in program
order by block j (fall through)

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

10

goto

11

No
e:=b/c
f:e+1
No
return

backedge Why?

preheader

backedges indicate that

we might need to traverse
the CFG more than once

for data flow analysis

exit edge

Exit edge

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Not all loops have preheaders

backedge - Sometimes it is useful to create
them

preheader

Without preheader node
try ed
- There can be multiple entry

dges

With single
preheader node

- There is only one
entry edge

edge

exit edge

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Loop:
Loop entry edge:

Loop exit edge:

Loop header node:

Strongly connected component of CFG
Source not in loop & target in loop

Source in loop & target not in loop

Target of loop entry edge

Back edge:

Loop tail node:

Target is loop header & source is in the loop

Source of back edge

Loop preheader node: Single node that’s source of the loop entry edge
Nested loop: Loop whose header is inside another loop

Reducible flow graph: CFG whose loops are all natural loops

*Why is it important?
—Most execution time spent in loops, so optimizing loops will often give most benefit

*Many approaches
—Interval analysis
—Exploit the natural hierarchical structure of programs
—Decompose the program into nested regions called intervals
—Structural analysis: a generalization of interval analysis
—ldentify dominators to discover loops

e d dom i if all paths from entry to node i include d >

d domi

e Strict Dominator (d sdom 1) \
e [fddomi, butd !=1 <

e Immediate dominator (a idom b)

» a sdom b and there does not exist any node ¢ such thata !=c,c !=b,adomc, c

dom b
; x entry
e Post dominator (p pdom 1)
o If every possible path from 1 to exit includes p a idom b
not $ ¢, a sdom c and c sdom b /E;

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

* Post dominators (p pdom i)

[T]
if every possible path from i to exit includes p)

(p dom i in the flow graph whose arcs are b pdom i
g(it

reversed and entry and exit are interchanged)

« Back Edge

* A back edge of a natural loop 1s one whose target of the back edge dominates its
source

« Natural Loop
e The natural loop of a back edge (m—n), where n dominates m, is the set of

nodes x such thatn dominates x and there 1s a path from x to m not containing n

t

back
edge

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

* A CFG is reducible (well-structured) if we can partition its edges into two
disjoint sets, the forward edges and the back edges, such that

= The forward edges form an acyclic graph in which every node can be reached from
the entry node

= The back edges consist only of edges whose targets dominate their sources
= Non-natural loops = irreducibility

n?:::>
e: if (cond) goto b e: if (cond) then

a: x = y= ...
: ... while (T) {
n2 = ...

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

*Structured control-flow constructs give rise to reducible CFGs

Value of reducibility:
—Dominance useful in identifying loops

—Simplifies code transformations (every loop has a single header)
—Permits interval analysis

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

« Node splitting
e Can turn irreducible CFGs into reducible CFGs

a a_ |
\7 \7
b b
L~ R il W
c [—> c <—
=
\7 AVATAY \7
e el i

General idea
-Reduce graph (iteratively remove self edges, merge nodes with single pred)
-More than one node => irreducible
- Split any multi-parent node and start over

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

—We can work on the binary code
—Most modern languages still provide a goto statement

—Languages typically provide multiple types of loops. This analysis lets us treat
them all uniformly

—We may want a compiler with multiple front ends for multiple languages;
rather than translating each language to a CFG, translate each language to a
canonical IR and then to a CFG

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

