
Control Flow Analysis
PLT (Fall 2019)
Baishakhi Ray

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Representing Control Flow
High-level representation
–Control flow is implicit in an AST

Low-level representation:
–Use a Control-flow graph (CFG)

–Nodes represent statements (low-level linear IR)
–Edges represent explicit flow of control

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

What Is Control-Flow Analysis?

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

 a := 0
 b := a * b

e := b / c
f : e + 1

g := f
h := t – g
If e > 0 ?

goto return

c := b / d
c < x?

1

3

5

7

1110

Yes No

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Basic Blocks

• A basic block is a sequence of straight line code that can be entered only
at the beginning and exited only at the end

g := f
h := t – g
If e > 0 ?

Building basic blocks
– Identify leaders

–The first instruction in a procedure, or
–The target of any branch, or
–An instruction immediately following a branch (implicit target)

– Gobble all subsequent instructions until the next leader

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Basic Block Example

1
2

a := 0
b := a * b

3 L1: c := b/d

4
5
6

if c < x goto L2
e := b / c
f := e + 1

7 L2: g := f

8
9

h := t - g
if e > 0 goto L3

10 goto L1
11 L3: return

Leaders?
– {1, 3, 5, 7, 10, 11}

Blocks?
– {1, 2}
– {3, 4}
– {5, 6}
– {7, 8, 9}
– {10}
– {11}

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Building a CFG From Basic Block

Construction
–Each CFG node represents a basic
block

–There is an edge from node i to j if
–Last statement of block i branches
to the first statement of j, or

–Block i does not end with an
unconditional branch and is
immediately followed in program
order by block j (fall through)

goto L1:

L1

i

j

goto L1:

L1

i

j

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Building a CFG From Basic Block

Construction
–Each CFG node represents a basic
block

–There is an edge from node i to j if
–Last statement of block i branches
to the first statement of j, or

–Block i does not end with an
unconditional branch and is
immediately followed in program
order by block j (fall through)

 a := 0

 b := a * b

e := b / c
f : e + 1

g := f
h := t – g
If e > 0 ?

goto return

c := b / d
c < x?

1

3

5

7

1110
Yes No

Yes

No

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Looping

preheader

head

tail exit edge

Exit edge

backedge

entry edge

Loop

Why?
backedges indicate that
we might need to traverse
the CFG more than once
for data flow analysis

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Looping

preheader

head

tail exit edge

Exit
edge

backedge

entry edge

Loop

Not all loops have preheaders
– Sometimes it is useful to create
them

Without preheader node
– There can be multiple entry
edges

With single
preheader node
– There is only one
entry edge

Looping Terminology

Loop:
Loop entry edge:

Loop exit edge:

Loop header node:

Strongly connected component of CFG
Source not in loop & target in loop

Source in loop & target not in loop

Target of loop entry edge

Natural loop: Loop with only a single loop header

Back edge:

Loop tail node:

Target is loop header & source is in the loop

Source of back edge

Looping Terminology

Loop preheader node: Single node that’s source of the loop entry edge
Nested loop: Loop whose header is inside another loop

Reducible flow graph: CFG whose loops are all natural loops

Identifying Loops
•Why is it important?
–Most execution time spent in loops, so optimizing loops will often give most benefit

•Many approaches
–Interval analysis
–Exploit the natural hierarchical structure of programs
–Decompose the program into nested regions called intervals

–Structural analysis: a generalization of interval analysis
–Identify dominators to discover loops

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Dominators
• d dom i if all paths from entry to node i include d
• Strict Dominator (d sdom i)
• If d dom i, but d != i

• Immediate dominator (a idom b)
• a sdom b and there does not exist any node c such that a != c, c != b, a dom c, c

dom b

• Post dominator (p pdom i)
• If every possible path from i to exit includes p

entry

d dom i

a

b

entry

a idom b

not $ c, a sdom c and c sdom b

• Post dominators (p pdom i)

 if every possible path from i to exit includes p
(p dom i in the flow graph whose arcs are
reversed and entry and exit are interchanged)

p

i

exit

p pdom i

Dominators

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Identifying Natural Loops and
Dominators

• Back Edge
• A back edge of a natural loop is one whose target of the back edge dominates its

source

• Natural Loop
• The natural loop of a back edge (m→n), where n dominates m, is the set of

nodes x such that n dominates x and there is a path from x to m not containing n
t

s

back

edge

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Reducibility
• A CFG is reducible (well-structured) if we can partition its edges into two
disjoint sets, the forward edges and the back edges, such that

▪ The forward edges form an acyclic graph in which every node can be reached from
the entry node

▪ The back edges consist only of edges whose targets dominate their sources
▪ Non-natural loops ⬄ irreducibility

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Reducibility
•Structured control-flow constructs give rise to reducible CFGs

•Value of reducibility:
–Dominance useful in identifying loops
–Simplifies code transformations (every loop has a single header)
–Permits interval analysis

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Handling Irreducible CFG’s
• Node splitting
• Can turn irreducible CFGs into reducible CFGs

a

b

c d

e

b

c

a

d

d1 e

General idea
–Reduce graph (iteratively remove self edges, merge nodes with single pred)
–More than one node => irreducible

– Split any multi-parent node and start over

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

Why go through all this trouble?
–We can work on the binary code
–Most modern languages still provide a goto statement
–Languages typically provide multiple types of loops. This analysis lets us treat
them all uniformly
–We may want a compiler with multiple front ends for multiple languages;
rather than translating each language to a CFG, translate each language to a
canonical IR and then to a CFG

