Data Flow Analysis

Baishakhi Ray
Columbia University

Adopted From U Penn CIS 570: Modern Programming Language Implementation (Autumn 2006)

« Derives information about the dynamic
behavior of a program by only examining
the static code

3 c :=c+Db
* Intraprocedural analysis 4 a :=b * 2
* Flow-sensitive: sensitive to the 5 if a < 9 goto L1
control flow in a function 6 return c
« Examples How many registers do we need?
— Live variable analysis Easy bound: # of used variables
— Constant propagation (3)
— Common subexpression elimination Need better answer

— Dead code detection

Bl | a =10

A
B2 || if input() |»exit

Y
b
a

a
1

B3)

: finite program
: can have infinitely many paths

« Data flow analysis abstraction
* For each point in the program, combines information of all instances

of the same program point

Example 1: Liveness Analysis

Definition
-A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).

-To compute liveness at a given point, we need to look into the
future

Motivation: Register Allocation
-A program contains an unbounded number of variables
- Must execute on a machine with a bounded number of registers

-Two variables can use the same register if they are never in use at
the same time (i.e, never simultaneously live).

-Register allocation uses liveness information

Control Flow Graph

e Let’s consider CFG where

|

nodes contain program 1. a=0
statement instead of basic ———
block. :

’ 3 c=Cc+b
1. a:=0
2. L1 b:=a+1 4 a=b*2
3.ci=c+b
4. a « = b * 2 \ 4
5. if a <9 goto L1 5. a<9
6.

Yes
return ¢ V

6. return c

* Live range of b

* Variable b is read in line 4, so b
is live on 3->4 edge

* b is also read in line 3, so b is
live on (2->3) edge

 Line 2 assigns b, so value of b
on edges (1->2) and (5->2) are
not needed. So b is dead along
those edges.

* b’s live range is (2->3->4)

1. a=0

2. b=a+1

3. c=c+b

4. a=b*2

5. a<o9
No

6. return c

Yes

Liveness by Example

* Live range of a
* (1->2) and (4->5->2)
* ais dead on (2->3->4)

!
1. a=0
2. b='a+1
3. c;L+b
4. a=b*2
5. ;;9

o —

6. return c

Yes

* Flow graph terms

* A CFG node has out-edges that lead
to successor nodes and in-edges
that come from predecessor nodes

« pred[n] is the set of all
predecessors of node n

* succ[n] is the set of all successors
of node n

Examples
— Qut-edges of nhode 5: (5--6) and (5--2)

- succ[5] = {2,6}

- Brédh = s

A

!
1. a=0
2 b=‘e'1+1
3 c="c+b
4 a=b*2
5 a"<9

6. return c

Yes

Def (or definition)
- An assignment of a value to a variable
- def[v] = set of CFG nodes that define variable v
- def[n] = set of variables that are defined at node n

Use
-Aread of a variable’s value
-use[v] = set of CFG nodes that use variable v
-use[n] = set of variables that are used at node n

More precise definition of liveness
- Avariable v is live on a CFG edge if

(1)3 a directed path from that edge to a use of v (node in

use[v]), and
(2)that path does not go through any def of v (no nodes in
def[v])

()
I
o

v live

& def[v]

€ use|v]

 Data-flow

 Liveness of variables is a property that
flows through the edges of the CFG

e Direction of Flow

* Liveness flows backwards through the
CFG, because the behavior at future

nodes determines liveness at a given
node

1. a=0

2. b=a+1

3. c=c+b

4, a=b*2

5. a<o9
No

6. return c

Yes

Liveness at Nodes

|
| Just before computation .
= 1. a=0
a=2>0
l Just after computation =
2. b=a+1 <

Two More Definitions
4, a=b*2

- A variable is live-out at a node if it is live on

any out edges
- Avariable is live-in at a node if it is live on any in
5.

edges
o~

6. return c

Yes

Generate liveness: If a variable is in use[n], it is live-in at node n

Push liveness across edges:
« If a variable is live-in at a node n
« then it is live-out at all nodes in pred[n]

Push liveness across nodes:
* |If a variable is live-out at node n and not in def[n]
* then the variable is also live-in at n

Data flow Equation: j,r1 = yse[n] J (out|n] — def|n])

out[n] = J in[s]

sesucc|n]

for each node n in CFG
in[n] = @; out[n] = @

Initialize solutions

repeat
for each node n in CFG
in’[n] = in[n] Save current results
out’[n] = out[n]
in[n] = use[n] u (out[n] - def[n]) Solve data-flow equation
out[n] = u in[s]
S € succ[n]
until in’[n]=in[n] and out’[n]=out[n] for all n Test for convergence

Computing Liveness Example

Ist 2nd 3rd 4th 5th 6th 7th
n%ie use def| in out | in out |in out [in out | in out | in out | in out
1 a a ac | cac| cac| c ac
2 a a a bc |ac bc |ac be|ac befac be|ac be
3 bc be bc b |bc b |bc b |bec b [bc be|be be
4 Db b b a|b a |b ac|bc ac|bc ac|bc ac
5 a a a |a acfac ac|ac ac|ac ac|ac ac|ac ac
6 ¢ C c C c C c C

A

!
1. a=0
2 b=;+1
3 c;k+b
4 a=b*2

6. return c

Yes

Iterating Backwards: Converges Faster

|
1st 2nd 3rd 1. a=0
110413 use def |out in |out in [out in !
6 C C C C 2. b=a+1
5 C ac | ac aclac ac v
4 b a |ac be| ac be|ac be 3 c=c+b
3 bc ¢ |bc be| be belbe be
4 a=b*2
2 a b |bc ac| bec ac|bc ac
1 a |ac c|lacc|ac ¢ *
5 a<9

V Yes

6. return c

Node |use def _

. 6 C
[
Liveness Example: Round1 s .
4 b a
A variable is live at a particular point in the program if its value l 3 bc ¢
at that point will be used in the future (dead, otherwise). 1. a=0 7 3 b
Algorithm ' 1 a
_ 2. b=a+1 <
for each node n in CFG
in[n] = & out[n] = & } [nitialize solutions !
repeat 3. c=c+b
for each node n in CFG in reverse topsort order
in’[’n] =_in[n] Save current results 4. a=b*2
out’[n] = out|n]
out|n] = sEsEch[n] in[s] } Solve data-flow equations y
in|n]| = use|n| U (out|n]| — def]n)) 5. a<9
until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence V Yes
A

6. return c

Node |use def _

. 6 C
[
Liveness Example: Round1 s .
4 b a
in: ¢ ! 3 bc ¢
Algorithm out: ac | 1- a=0 2 a b
for each node n in CFG in: ac 2 b ; . 1) 1 2
: — o _ [nitialize solutions . = B
in[n] =J; out[n] =9 } out: bc
repeat v in: bc
for each node n in CFG in reverse topsort order 3. c=Cc+b
in’[n] = in[n] out: bc
Save current results . Y
out’[n] = out[n] in: bc 4 b * 2 €5
B . a=b*
out[n] = s € suce[n] in[s] } Solve data-flow equations out: ac
in[n] = use[n] U (out[n] — def[n)) ! in: ac
until in’[n]=in[n] and out’[n]=out[n] for all n } Test for convergence 5 a<9 i

out: c
No_—
p mn: c

6. return c

Node |use |def

. 6 C
([
Liveness Example: Round1 s .
4 b a
in: c ! 3 bc ¢
Algorithm out: ac 1. a=0 2 a b
for each node n in CFG o _ in: ac 2 b= E'i .1) 1 2
in[n] = J; out[n] =2 } [nitialize solutions out: be . =
repeat v in: bc
for each node n in CFG in reverse topsort order 3. c=c+b
in’[n] = in[n] Save current results out: bc
out’[n] = out[n] in: bc 4 b * 2 Yes
= : a=
out[n] = ses&cjc[n] in[s] } Solve data-flow equations out: ac
in[n| = use[n] U (out[n] — def|n]) ! .
o s : s n: ac
until in’[n]=in[n] and out’[n]=out[n] for all n }Test for convergence 5 a<9

out: ac
No_—
p mn: c

6. return c

Conservative Approximation

X Y z
ll%fie use def|in out|in out|in out
1 a c ac cd acd] c¢ ac
2 a b | ac bc |acd bed| ac b
3 bc ¢ [bc bec |bedbed b b
4 b a | bc ac |bed acj b ac
5 a ac ac |acd acd|ac ac
6 c c C C

Solution X:

- From the previous slide

!
1. a=0

b=a+1

A

6. return c

Yes

Conservative Approximation

X Y z
ngrﬂe use def||in out|in out|in out
1 a Cc ac cd acd| c¢ ac
2 a b |[[ac bc |acd bed| ac b
3 bc ¢ [bc bec |bedbed b b
4 b a || bc ac |bed accl' b ac
5 a ac ac |acd acd|ac ac
6 C c c c

Solution Y:

Carries variable d uselessly
- Does Y lead to a correct program?

A

|
1. a=0
2. b=a+1
3 c=cCc+b
4 a=b*2
5. a<9
No —

6. return c

Yes

Imprecise conservative solutions = sub-optimal but correct programs

Conservative Approximation

X Y Z l
n%gle use def|| in out |in out| in out 1. a=0
1 a ¢ ac cd acd] c¢ ac i
2 a b [[ac bc |acd bed| ac b 2. b=a+1 <
3 bc ¢ | bec be bcdbcj b b
4 b a || bc ac |becd acd| b ac =
3 c=cCc+b
5 a ac ac |acd acd| ac ac
6 C C C C
4 a=b*2
Solution Z: !
Does not identify c as live in all cases 5 a<9
- Does Z lead to a correct program?
V
A

6. return c

Non-conservative solutions = incorrect programs

Yes

Soundness vs. Completeness
« Dataflow analysis sacrifices completeness

« Dataflow analysis is sound
 Report facts that could occur

Need for approximation

» Static vs. Dynamic Liveness: b*b is always non-negative, so ¢ >=
b is always true and a’s value will never be used after node

Y
lla :(=b *Db , : , .
| No compiler can statically identify
& all infeasible paths
2lc :=a+b
3l ¢ >= b? -
No Yes

return a 5| return c

Liveness Analysis Example Summary

* Live range of a

|
* (1->2) and (4->5->2) T 220
* Live range of b !
2. b=a+1
* (2->3->4)
* Live range of c 3. c-ceb
* Entry->1->2->3->4->5->2 5->6
4 a=b*2
You need 2 registers Why? 5. _ass Yes
H V

6. return c

Example Dataflow Analysis

* Liveness Analysis
* Application: Register Allocation

« Reaching Definition Analysis
* Application: Find uninitialized variable uses

 Very Busy Expression Analysis
 Application: Reduce Code Size

 Available Expression Analysis
 Application: Avoid Recomputing

 Definition: A definition d of a variable v reaches node n if
there is a path from d to n such that v is not redefined along
that path.

Reaching Definition

Definition

< — | & def[v]

Uses of reaching definitions da| x 1= 5|
— Build use/def chains < Does this def of x reach n?
_ . . Can we replace n with £ (5) ?
Constant propagation ol £ (x)

— Loop mvariant code motion

a=. . ., 44— Reaching definitions of a and b
b = I, : ..
for To determine whether it’s legal to move statement 4

(.) { out of the loop. we need to ensure that there are no
x = a + b;< reaching definitions of a or b inside the loop

Oy U1k W N+

OooJdJon0lhdWPMNDR

. example () {

b=0;
for(a=0; a< 5;
b=Db+ a;
while (b!=0)
b=Db -1;
}

return (b) ;

.}

a++) {

[n1. example]

l

[n2. b=0 |

l

| n3. a=0 |

l

False

n4d. a <5]
lTrue

5. b=b+a

!
<n6. bl=0]
J,True
False
n7. b=b-1]

rw.a=a+ﬂJ

|

[n9. example]

« Assumption: At most one definition per node

* Gen[n]: Definitions that are generated by node n (at most one)
* Kill[n]: Definitions that are killed by node n

statement gen's Kills
X:=y {y} {x}
X:=p(y,z) {y,z} {x}
X:=*(y+i) {1} {x}
*(v+i)=x {x} {}

=1y, ¥n) BYnayed XD

Generic Dataflow Analysis

* IN[n] = set of facts at the entry of node n

* OUTIn] = set of facts at the exit of node n
 Analysis computes IN[n] and OUT|[n] for each node

* Repeat this operation until IN[n] and OUT|[n] stops changing
* fixed point

Data-flow equations for Reaching Definition

The in set
— A definition reaches the beginning of a node if it reaches the end of any of
the predecessors of that node _—
Q out out > predin]
N ¥
n imn
The out set

— A definition reaches the end of a node if (1) the node itself generates the
definition or if (2) the definition reaches the beginning of the node and the
node does not Kill it

i
inn]= U out[p] e >
p € pred[n] (D) (2)

out[n] = gen[n] U (in[n] — kill[n])

[n1. example]

INm= () ouTipl |

pEpred|n]

[n2. b=0 |
OUT[n] = GEN|[n] U (IN[n] — KILL[n]) l

| n3. a=0 |

l

nd. a<5] Tlse

l True

[n5- bfb+a] [n9. example]

né. bl=0]
lTrue
False
n7. b=b-1]

n8. a=a+1]_)

 Data-flow Equation for liveness
in[n] = use[n] U (out[n] — def[n))
outln]= U in[s]

s & succ[n]

 Liveness equations in terms of Gen and Kill

in[n] = gen[n] U (out[n] — kill[n])

A use of a variable generates liveness

outfn]= U in[s] A def of a variable kills liveness
s & succ[n]

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Backward data-flow analysis

— Information at a node 1s based on what happens later in the flow graph
i.e., m[] 1s defined in terms of out[]

n L
in[n] =gen[n] U (out[n]— kill[n]) in :

U _ 4 liveness
out[n] = < & Saecfa] mn[s] ont

P

Forward data-flow analysis

— Information at a node 1s based on what happens earlier in the flow graph
i.e., out[] 1s defined in terms of 1n[]

n 1.:!!—,.*
mn[n] ~ etﬁge d[n] out[p] | | li 1‘efichi.ng
out[n] =gen[n] U (in[n] — kill[n]) ol definitions

P

Some problems need both forward and backward analysis
— e.g., Partial redundancy elimination (uncommon)

Data-Flow Equation for reaching definition

Symmetry between reaching definitions and liveness
— Swap 1m[] and out[] and swap the directions of the arcs

Reaching Definitions Live Variables
infn]l= U out[s outln]= U mls
[] P € pred[n] [] [] s & succ[n] []

out[n] = gen[n] U (in[n] — kill[n]) in[n] = gen[n] U (out[n] — kill[n])

entry ent1>y
Defof x | x= n
Is x def’d along Is x def’d along

this path? this path?

n Use of X| =x

* An expression, X+y, is available at node n if every path from
the entry node to n evaluates x+y, and there are no definitions
of x or y after the last evaluation.

entry

L LX+HY ...

el

CX+Y ...

x and y not defined
along blue edges

Available Expression for CSE

« Common Subexpression eliminated

* |f an expression is available at a point where it is evaluated, it need
not be recomputed

Example . ¢
1| 1 =7
v £ =4 % i
=73 a := t
a =4 * 31 /
_41/ 201 =1+ 1
211 = 1 + £ = 4 * j
b :=4 * i) -0

Q
[
< (+ =

Must vs. May analysis

* May information: Identifies possibilities
* Must information: Implies a guarantee

I Must

Forward Reaching Definition Available Expression
Backward Live Variables Very Busy Expression

