
CODE GENERATION
Baishakhi Ray

Fall 2020

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Stack Machine

▪ A simple evaluation model

▪ No variables or registers

▪ A stack of values for intermediate results

▪ Each instruction:
▪ Takes its operands from the top of the stack
▪ Removes those operands from the stack
▪ Computes the required operation on them
▪ Pushes the result on the stack

Example of Stack Machine Operation

▪ The addition operation on a stack machine

5
7
9
…

5

9
…

7

12
9
…

+

pop add push

Example of a Stack Machine Program

▪ Consider two instructions
▪ push i - place the integer i on top of the stack
▪ add - pop two elements, add them and put the result back on the stack

▪ A program to compute 7 + 5:

push 7

push 5

add

Why Use a Stack Machine?

▪ Each operation takes operands from the same place and puts results in the same
place

▪ This means a uniform compilation scheme

▪ And therefore a simpler compiler

Why Use a Stack Machine?

▪ Location of the operands is implicit
▪ Always on the top of the stack

▪ No need to specify operands explicitly

▪ No need to specify the location of the result

▪ Instruction “add” as opposed to “add r1, r2”
⇒ Smaller encoding of instructions

⇒ More compact programs

▪ This is one reason why Java Bytecodes use a stack evaluation model

Optimizing the Stack Machine

▪ The add instruction does 3 memory operations
▪ Two reads and one write to the stack
▪ The top of the stack is frequently accessed

▪ Idea: keep the top of the stack in a register (called accumulator)
▪ Register accesses are faster

▪ The “add” instruction is now
acc ← acc + top_of_stack
▪ Only one memory operation!

Stack Machine with Accumulator

▪ Invariants
▪ The result of an expression is in the accumulator

▪ For op(e1,…,en) push the accumulator on the stack after computing e1,…,en-1
▪ After the operation pops n-1 values

▪ Expression evaluation preserves the stack

Stack Machine with Accumulator. Example

▪ Compute 7 + 5 using an accumulator

1. acc ← 7; push acc

2. acc ← 5

3. acc ← acc + top_of_stack

4. pop

A Bigger Example: 3 + (7 + 5)

Code ACC Stack
acc ← 3 3 <init>
push acc 3 3,<init>
acc ← 7 7 3,<init>
push 7 7, 3,<init>
acc ← 5 5 7, 3,<init>
acc ← acc + top_of_stack 12 7, 3,<init>
pop 12 3,<init>
acc ← acc + top_of_stack 15 3,<init>
pop 15 <init>

It is very important evaluation of a subexpression preserves the stack
• Stack before the evaluation of 7 + 5 is 3
• Stack after the evaluation of 7 + 5 is 3
• The first operand is on top of the stack

Poll

▪ If the current state of the stack is : Acc: 3; Stack: 14, < init > ; What is the next line of
code to generate for the code fragment (5 + 9) + 3?

▪ Consider the expression (7 + 5) * (3 + 2). Which of the following are possible stack
machine states during the evaluation?

From Stack Machines to MIPS

▪ The compiler generates code for a stack machine with accumulator

▪ Let’s run the resulting code on a MIPS like processor.
▪ Simulate stack machine instructions using MIPS instructions and registers

▪ The accumulator is kept in MIPS register $a0

▪ The stack is kept in memory
▪ The stack grows towards lower addresses

▪ The address of the next location on the stack is kept in MIPS register $sp (stack
pointer)
▪ The top of the stack is at address $sp + 4

MIPS Assembly

▪ MIPS architecture
▪ Prototypical Reduced Instruction Set Computer (RISC) architecture
▪ Arithmetic operations use registers for operands and results
▪ Must use load and store instructions to use operands and results in memory
▪ 32 general purpose registers (32 bits each)

▪ We will use $sp, $a0 and $t1 (a temporary register)

A Sample of MIPS Instructions

▪ lw reg1 offset(reg2)
▪ Load 32-bit word from the value of reg2 (which is a memory address), add a fixed value

offset into reg1

▪ add reg1 reg2 reg3
▪ reg1 ← reg2 + reg3

▪ sw reg1 offset(reg2)
▪ Store 32-bit word in reg1 at address reg2 + offset

▪ addiu reg1 reg2 imm
▪ reg1 ← reg2 + imm
▪ “u” means overflow is not checked

▪ li reg imm
▪ reg ← imm

MIPS Assembly, Example

▪ The stack-machine code for 7 + 5 in MIPS:

▪ Let’s generalize this to a simple language

Steps MIPS Instruction
acc = 7 li $a0 7

push acc sw $a0 0($sp)
addiu $sp $sp -4

acc ← 5 li $a0 5

acc ← acc + top_of_stack lw $t1 4($sp)
add $a0 $a0 $t1

pop addiu $sp $sp 4

A Small Language

▪ A language with integers and integer operations
 P → D; P | D
 D → def id(ARGS) = E;
 ARGS → id, ARGS | id
 E → int | id | if E1 = E2 then E3 else E4
 | E1 + E2 | E1 – E2 | id(E1,…,En)

▪ The first function definition f is the “main” routine
▪ Running the program on input i means computing f(i)
▪ Program for computing the Fibonacci numbers:

 def fib(x) = if x = 1 then 0 else
 if x = 2 then 1 else
 fib(x - 1) + fib(x – 2)

Code Generation Strategy

▪ For each expression e we generate MIPS code that:
▪ Computes the value of e in $a0
▪ Preserves $sp and the contents of the stack •

▪ We define a code generation function cgen(e) whose result is the code generated for e

▪ The code to evaluate a constant simply copies it into the accumulator:

cgen(i) = li $a0 i

▪ This preserves the stack, as required

▪ Color key:
▪ RED: compile time
▪ BLUE: run time

Code Generation for Add

cgen(e1 + e2) =

cgen(e1)

sw $a0 0($sp)

addiu $sp $sp -4

cgen(e2)

lw $t1 4($sp)

add $a0 $t1 $a0

addiu $sp $sp 4

cgen(e1 + e2) =

cgen(e1)

print “sw $a0 0($sp)”

print “addiu $sp $sp -4”

cgen(e2)

print ”lw $t1 4($sp)”

print “add $a0 $t1 $a0”

print “addiu $sp $sp 4”

Code Generation for Sub and Constants

▪ New instruction: sub reg1 reg2 reg3
Implements reg1 ← reg2 - reg3

cgen(e1 - e2) = cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
sub $a0 $t1 $a0
addiu $sp $sp 4

Code Generation for Conditional

▪ We need flow control instructions

▪ New instruction: beq reg1 reg2 label
▪ Branch to label if reg1 = reg2

▪ New instruction: b label
▪ Unconditional jump to label

Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
sw $a0 0($sp)
addiu $sp $sp -4
cgen(e2)
lw $t1 4($sp)
addiu $sp $sp 4
beq $a0 $t1 true_branch

false_branch:
 cgen(e4)
 b end_if
true_branch:
 cgen(e3)
end_if:

The Activation Record

▪ Code for function calls and function definitions depends on the layout of the AR

▪ A very simple AR suffices for this language:
▪ The result is always in the accumulator

▪ No need to store the result in the AR
▪ The activation record holds actual parameters

▪ For f(x1,…,xn) push xn,…,x1 on the stack
▪ These are the only variables in this language

The Activation Record (Cont.)

▪ The stack discipline guarantees that on function exit $sp is the same as it was on
function entry
▪ No need for a control link

▪ We need the return address

▪ A pointer to the current activation is useful
▪ This pointer lives in register $fp (frame pointer)
▪ Reason for frame pointer will be clear shortly

The Activation Record

▪ Summary: For this language, an AR with the caller’s frame pointer, the actual
parameters, and the return address suffices

▪ Picture: Consider a call to f(x,y), the AR is:

old fp
y
x

FP

SP

AR of f

Code Generation for Function Call

▪ The calling sequence is the instructions (of both caller and callee) to set up a function
invocation

▪ New instruction: jal label
▪ Jump to label, save address of next instruction in $ra
▪ On other architectures the return address is stored on the stack by the “call” instruction

Code Generation for Function Call (Cont.)

cgen(f(e1,…,en)) =
sw $fp 0($sp)
addiu $sp $sp -4
cgen(en)

sw $a0 0($sp)
addiu $sp $sp -4
…
cgen(e1)

sw $a0 0($sp)
addiu $sp $sp -4
jal f_entry

▪ The caller saves its value of the frame
pointer

▪ Then it saves the actual parameters in
reverse order

▪ The caller saves the return address in
register $ra

▪ The AR so far is 4*n+4 bytes long

Code Generation for Function Definition

▪ New instruction: jr reg
▪ Jump to address in register reg

cgen(def f(x1,…,xn) = e) =
fEntry:
 move $fp $sp
 sw $ra 0($sp)
 addiu $sp $sp -4
 cgen(e)
 lw $ra 4($sp)
 addiu $sp $sp z
 lw $fp 0($sp)
 jr $ra

Note: The frame pointer points to the top,
not bottom of the frame

The callee pops the return address, the actual
arguments and the saved value of the frame pointer.

z = 4*n + 8

Calling Sequence: Example for f(x,y)

Code Generation for Variables

▪ Variable references are the last construct

▪ The “variables” of a function are just its parameters
▪ They are all in the AR
▪ Pushed by the caller

▪ Problem: Because the stack grows when intermediate results are saved, the variables
are not at a fixed offset from $sp

Code Generation for Variables (Cont.)

▪ Solution: use a frame pointer
▪ Always points to the return address on the stack
▪ Since it does not move it can be used to find the variables

▪ Let xi be the ith (i = 1,…,n) formal parameter of the function for which code is being
generated

cgen(xi) = lw $a0 z($fp) (z = 4*i)

Code Generation for Variables (Cont.)

▪ Example: For a function def f(x,y) = e the activation and frame pointer are set up as
follows:

• X is at fp + 4
• Y is at fp + 8

Summary

▪ The activation record must be designed together with the code generator.

▪ Code generation can be done by recursive traversal of the AST.

▪ Production compilers do different things
▪ Emphasis is on keeping values (esp. current stack frame) in registers
▪ Intermediate results are laid out in the AR, not pushed and popped from the stack

