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Stack Machine

▪ A simple evaluation model 

▪ No variables or registers 

▪ A stack of values for intermediate results 

▪ Each instruction: 
▪ Takes its operands from the top of the stack 
▪ Removes those operands from the stack 
▪ Computes the required operation on them 
▪ Pushes the result on the stack 



Example of Stack Machine Operation 

▪ The addition operation on a stack machine 
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Example of a Stack Machine Program 

▪ Consider two instructions 
▪ push i - place the integer i on top of the stack 
▪ add - pop two elements, add them and put the result back on the stack 

▪ A program to compute 7 + 5: 

push 7 

push 5 

add



Why Use a Stack Machine? 

▪ Each operation takes operands from the same place and puts results in the same 
place 

▪ This means a uniform compilation scheme 

▪ And therefore a simpler compiler 



Why Use a Stack Machine? 

▪ Location of the operands is implicit 
▪  Always on the top of the stack 

▪ No need to specify operands explicitly 

▪ No need to specify the location of the result 

▪ Instruction “add” as opposed to “add r1, r2” 
⇒ Smaller encoding of instructions 

⇒ More compact programs 

▪ This is one reason why Java Bytecodes use a stack evaluation model 



Optimizing the Stack Machine 

▪ The add instruction does 3 memory operations 
▪ Two reads and one write to the stack 
▪ The top of the stack is frequently accessed 

▪ Idea: keep the top of the stack in a register (called accumulator) 
▪ Register accesses are faster 

▪ The “add” instruction is now 
acc ← acc + top_of_stack
▪ Only one memory operation! 



Stack Machine with Accumulator 

▪ Invariants 
▪ The result of an expression is in the accumulator 

▪ For op(e1,…,en) push the accumulator on the stack after computing e1,…,en-1 
▪ After the operation pops n-1 values 

▪  Expression evaluation preserves the stack 



Stack Machine with Accumulator. Example 

▪ Compute 7 + 5 using an accumulator 

1. acc ← 7; push acc

2. acc ← 5 

3. acc ← acc + top_of_stack 

4. pop



A Bigger Example: 3 + (7 + 5) 

Code ACC Stack
acc ← 3 3 <init>
push acc 3 3,<init>
acc ← 7 7 3,<init>
push 7 7, 3,<init>
acc ← 5 5 7, 3,<init>
acc ← acc + top_of_stack 12 7, 3,<init>
pop 12 3,<init>
acc ← acc + top_of_stack 15 3,<init>
pop 15 <init>

It is very important evaluation of a subexpression preserves the stack
• Stack before the evaluation of 7 + 5 is 3
• Stack after the evaluation of 7 + 5 is 3
• The first operand is on top of the stack 



Poll

▪ If the current state of the stack is : Acc: 3; Stack: 14,  <  init  > ; What is the next line of 
code to generate for the code fragment (5 + 9) + 3?

▪ Consider the expression (7 + 5) * (3 + 2). Which of the following are possible stack 
machine states during the evaluation?



From Stack Machines to MIPS 

▪ The compiler generates code for a stack machine with accumulator 

▪ Let’s run the resulting code on a MIPS like processor.
▪ Simulate stack machine instructions using MIPS instructions and registers 

▪ The accumulator is kept in MIPS register $a0 

▪ The stack is kept in memory 
▪ The stack grows towards lower addresses 

▪ The address of the next location on the stack is kept in MIPS register $sp (stack 
pointer)
▪ The top of the stack is at address $sp + 4 



MIPS Assembly 

▪ MIPS architecture 
▪ Prototypical Reduced Instruction Set Computer (RISC) architecture 
▪ Arithmetic operations use registers for operands and results 
▪ Must use load and store instructions to use operands and results in memory 
▪ 32 general purpose registers (32 bits each) 

▪ We will use $sp, $a0 and $t1 (a temporary register)



A Sample of MIPS Instructions 

▪ lw reg1 offset(reg2) 
▪ Load 32-bit word from the value of reg2 (which is a memory address), add a fixed value 

offset into reg1 

▪ add reg1 reg2 reg3 
▪ reg1 ← reg2 + reg3 

▪ sw reg1 offset(reg2) 
▪ Store 32-bit word in reg1 at address reg2 + offset 

▪ addiu reg1 reg2 imm 
▪ reg1 ← reg2 + imm 
▪ “u” means overflow is not checked 

▪ li reg imm 
▪ reg ← imm 



MIPS Assembly, Example

▪ The stack-machine code for 7 + 5 in MIPS:

▪ Let’s generalize this to a simple language 

Steps MIPS Instruction
acc = 7 li $a0 7 

push acc sw $a0 0($sp) 
addiu $sp $sp -4 

acc ← 5 li $a0 5 

acc ← acc + top_of_stack lw $t1 4($sp) 
add $a0 $a0 $t1 

pop addiu $sp $sp 4 



A Small Language 

▪ A language with integers and integer operations 
   P → D; P | D 
   D → def id(ARGS) = E; 
   ARGS → id, ARGS | id 
   E → int | id | if E1 = E2 then E3 else E4 
        | E1 + E2 | E1 – E2 | id(E1,…,En) 

▪ The first function definition f is the “main” routine 
▪ Running the program on input i means computing f(i) 
▪ Program for computing the Fibonacci numbers: 

  def fib(x) = if x = 1 then 0 else 
               if x = 2 then 1 else 
               fib(x - 1) + fib(x – 2) 



Code Generation Strategy 

▪ For each expression e we generate MIPS code that: 
▪ Computes the value of e in $a0 
▪ Preserves $sp and the contents of the stack • 

▪ We define a code generation function cgen(e) whose result is the code generated for e 

▪ The code to evaluate a constant simply copies it into the accumulator: 

cgen(i) = li $a0 i 

▪ This preserves the stack, as required 

▪ Color key: 
▪ RED: compile time 
▪ BLUE: run time



Code Generation for Add 

cgen(e1 + e2) = 

cgen(e1) 

sw $a0 0($sp) 

addiu $sp $sp -4 

cgen(e2) 

lw $t1 4($sp) 

add $a0 $t1 $a0 

addiu $sp $sp 4 

cgen(e1 + e2) = 

cgen(e1) 

print “sw $a0 0($sp)” 

print “addiu $sp $sp -4” 

cgen(e2) 

print ”lw $t1 4($sp)” 

print “add $a0 $t1 $a0” 

print “addiu $sp $sp 4” 



Code Generation for Sub and Constants

▪ New instruction: sub reg1 reg2 reg3 
Implements reg1 ← reg2 - reg3 

cgen(e1 - e2) = cgen(e1) 
sw $a0 0($sp) 
addiu $sp $sp -4 
cgen(e2) 
lw $t1 4($sp) 
sub $a0 $t1 $a0 
addiu $sp $sp 4



Code Generation for Conditional

▪ We need flow control instructions 

▪ New instruction: beq reg1 reg2 label 
▪ Branch to label if reg1 = reg2 

▪ New instruction: b label 
▪ Unconditional jump to label



Code Generation for If (Cont.)

cgen(if e1 = e2 then e3 else e4) = 
cgen(e1) 
sw $a0 0($sp) 
addiu $sp $sp -4 
cgen(e2) 
lw $t1 4($sp) 
addiu $sp $sp 4 
beq $a0 $t1 true_branch 

false_branch: 
 cgen(e4) 
 b end_if 
true_branch:   
 cgen(e3) 
end_if:



The Activation Record

▪ Code for function calls and function definitions depends on the layout of the AR 

▪ A very simple AR suffices for this language: 
▪ The result is always in the accumulator 

▪ No need to store the result in the AR 
▪ The activation record holds actual parameters 

▪ For f(x1,…,xn) push xn,…,x1 on the stack 
▪ These are the only variables in this language



The Activation Record (Cont.)

▪ The stack discipline guarantees that on function exit $sp is the same as it was on 
function entry 
▪ No need for a control link 

▪ We need the return address 

▪ A pointer to the current activation is useful 
▪ This pointer lives in register $fp (frame pointer) 
▪ Reason for frame pointer will be clear shortly



The Activation Record

▪ Summary: For this language, an AR with the caller’s frame pointer, the actual 
parameters, and the return address suffices 

▪ Picture: Consider a call to f(x,y), the AR is:

old fp
y
x

FP

SP

AR of f 



Code Generation for Function Call 

▪ The calling sequence is the instructions (of both caller and callee) to set up a function 
invocation 

▪ New instruction: jal label 
▪ Jump to label, save address of next instruction in $ra 
▪ On other architectures the return address is stored on the stack by the “call” instruction 



Code Generation for Function Call (Cont.) 

cgen(f(e1,…,en)) = 
sw $fp 0($sp) 
addiu $sp $sp -4 
cgen(en) 

sw $a0 0($sp) 
addiu $sp $sp -4 
… 
cgen(e1) 

sw $a0 0($sp) 
addiu $sp $sp -4 
jal f_entry

▪ The caller saves its value of the frame 
pointer 

▪ Then it saves the actual parameters in 
reverse order 

▪ The caller saves the return address in 
register $ra 

▪ The AR so far is 4*n+4 bytes long 



Code Generation for Function Definition

▪ New instruction: jr reg 
▪ Jump to address in register reg

cgen(def f(x1,…,xn) = e) =
fEntry: 
  move $fp $sp 
  sw $ra 0($sp) 
  addiu $sp $sp -4 
  cgen(e) 
  lw $ra 4($sp) 
  addiu $sp $sp z 
  lw $fp 0($sp) 
  jr $ra

Note: The frame pointer points to the top, 
not bottom of the frame 

The callee pops the return address, the actual 
arguments and the saved value of the frame pointer.

z = 4*n + 8



Calling Sequence: Example for f(x,y)



Code Generation for Variables

▪ Variable references are the last construct 

▪ The “variables” of a function are just its parameters 
▪ They are all in the AR 
▪ Pushed by the caller 

▪ Problem: Because the stack grows when intermediate results are saved, the variables 
are not at a fixed offset from $sp



Code Generation for Variables (Cont.)

▪ Solution: use a frame pointer 
▪ Always points to the return address on the stack 
▪ Since it does not move it can be used to find the variables 

▪ Let xi be the ith (i = 1,…,n) formal parameter of the function for which code is being 
generated 

cgen(xi) = lw $a0 z($fp) ( z = 4*i )



Code Generation for Variables (Cont.)

▪ Example: For a function def f(x,y) = e the activation and frame pointer are set up as 
follows:

• X is at fp + 4 
• Y is at fp + 8



Summary

▪ The activation record must be designed together with the code generator.

▪ Code generation can be done by recursive traversal of the AST.

▪ Production compilers do different things 
▪ Emphasis is on keeping values (esp. current stack frame) in registers 
▪ Intermediate results are laid out in the AR, not pushed and popped from the stack


