COMPILER OPTIMIZATION

Baishakhi Ray

Fall 2020

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin
Optimization

- Optimization is our last compiler phase
- Most complexity in modern compilers is in the optimizer
 - Also by far the largest phase
- Optimizations are often applied to intermediate representations of code
When should we perform optimizations?

- **On AST**
 - Pro: Machine independent
 - Con: Too high level

- **On assembly language**
 - Pro: Exposes optimization opportunities
 - Con: Machine dependent
 - Con: Must reimplement optimizations when retargetting

- **On an intermediate language**
 - Pro: Machine independent
 - Pro: Exposes optimization opportunities
Intermediate Languages

- Intermediate language = high-level assembly
 - Uses register names, but has an unlimited number
 - Uses control structures like assembly language
 - Uses opcodes but some are higher level
 - E.g., push translates to several assembly instructions
 - Most opcodes correspond directly to assembly opcodes
Three-Address Intermediate Code

- Each instruction is of the form
 - $x := y \text{ op } z$ (binary operation)
 - $x := \text{ op } y$ (unary operation)
 - y and z are registers or constants
 - Common form of intermediate code

- The expression $x + y \ast z$ is translated
 - $t1 := y \ast z$
 - $t2 := x + t1$
 - Each subexpression has a “name”
Optimization Overview

- Optimization seeks to improve a program’s resource utilization
 - Execution time (most often)
 - Code size
 - Network messages sent, etc.

- Optimization should not alter what the program computes
 - The answer must still be the same
A Classification of Optimizations

- For languages like C there are three granularities of optimizations
 1. Local optimizations
 - Apply to a basic block in isolation
 2. Global optimizations
 - Apply to a control-flow graph (method body) in isolation
 3. Inter-procedural optimizations
 - Apply across method boundaries

- Most compilers do (1), many do (2), few do (3)
Cost of Optimizations

- In practice, a conscious decision is made not to implement the fanciest optimization known

- Why?
 - Some optimizations are hard to implement
 - Some optimizations are costly in compilation time
 - Some optimizations have low benefit
 - Many fancy optimizations are all three!

- Goal: Maximum benefit for minimum cost
Local Optimizations

- The simplest form of optimizations
- No need to analyze the whole procedure body
 - Just the basic block in question
- Example: algebraic simplification
Algebraic Simplification

- Some statements can be deleted
 \[x := x + 0 \]
 \[x := x \times 1 \]

- Some statements can be simplified
 \[x := x \times 0 \Rightarrow x := 0 \]
 \[y := y \times 2 \Rightarrow y := y \times y \]
 \[x := x \times 8 \Rightarrow x := x \ll 3 \]
 \[x := x \times 15 \Rightarrow t := x \ll 4; x := t - x \]

(on some machines \(\ll \) is faster than \(\times \); but not on all!)
Constant Folding

- Operations on constants can be computed at compile time
 - If there is a statement $x := y \text{ op } z$
 - And y and z are constants
 - Then $y \text{ op } z$ can be computed at compile time

- Example: $x := 2 + 2 \Rightarrow x := 4$

- Example: if $2 < 0$ jump L can be deleted

- When might constant folding be dangerous?
 - Floating point errors in cross-architecture compilation
Flow of Control Optimizations

- **Eliminate unreachable basic blocks:**
 - Code that is unreachable from the initial block
 - E.g., basic blocks that are not the target of any jump or “fall through” from a conditional

- **Removing unreachable code makes the program smaller**
 - And sometimes also faster
 - Due to memory cache effects (increased spatial locality)
Some optimizations are simplified if each register occurs only once on the left-hand side of an assignment

- Rewrite intermediate code in single assignment form

 \[
 \begin{align*}
 x & := z + y & b & := z + y \\
 a & := x & \Rightarrow & a := b \\
 x & := 2 \times x & x & := 2 \times b \\
 \end{align*}
 \]

 (b is a fresh register)

- More complicated in general, due to loops
Static Single Assignment (SSA) Form

- **Idea**
 - Each variable has only one static definition
 - Makes it easier to reason about values instead of variables
 - The point of SSA form is to represent use-def information explicitly

- **Transformation to SSA**
 - Rename each definition
 - Rename all uses reached by that definition

- **Example:**

 \[
 \begin{align*}
 v & := \ldots \\
 \ldots & := \ldots v \ldots \\
 v & := \ldots \\
 \ldots & := \ldots v \ldots \\
 v & := \ldots \\
 \ldots & := \ldots v \ldots \\
 v_0 & := \ldots \\
 \ldots & := \ldots v_0 \ldots \\
 v_1 & := \ldots \\
 \ldots & := \ldots v_1 \ldots \\
 v_2 & := \ldots \\
 \ldots & := \ldots v_2 \ldots
 \end{align*}
 \]
Problem: A use may be reached by several definitions
SSA and Control Flow (cont)

- **Merging Definitions**
 - \varnothing-functions merge multiple reaching definitions
Merging Definitions

- \emptyset-functions merge multiple reaching definitions
SSA vs. use-def chain

- SSA form is more constrained

- Advantages of SSA
 - More compact
 - Some analyses become simpler when each use has only one def
 - Value merging is explicit
 - Usually, easier to update and manipulate

- Furthermore
 - Eliminates false dependences (simplifying context)
SSA vs. use-def chain

- Worst case du-chains?

```c
switch (c1) {
    case 1: x = 1; break;
    case 2: x = 2; break;
    case 3: x = 3; break;
}
switch (c2) {
    case 1: y1 = x; break;
    case 2: y2 = x; break;
    case 3: y3 = x; break;
    case 4: y4 = x; break;
}
m defs and n uses leads to m x n du chains
```
Transformation to SSA Form

- **Two steps**
 - Insert \emptyset-functions
 - Rename variables

- **Basic Rule of Placing \emptyset-Functions?**
 - If two distinct (non-null) paths $x \rightarrow z$ and $y \rightarrow z$ converge at node z, and nodes x and y contain definitions of variable v, then we insert a \emptyset-function for v at z
Approaches to Placing \emptyset-Functions

- **Minimal**
 - As few as possible subject to the basic rule

- **Briggs-Minimal**
 - Same as minimal, except v must be live across some edge of the CFG
 - Briggs Minimal will not place a \emptyset function in this case because v is not live across any CFG edge.
 - Exploits the short lifetimes of many temporary variables
SSA: Variable Renaming

- When we see a variable on the LHS, create a new name for it.
- When we see a variable on the RHS, use appropriate subscript.
- Easy for straightforward code.

- Harder when there’s control flow:
 - For each use of x, find the definition of x that dominates it.
Common Subexpression Elimination

If

- Basic block is in single assignment form
- A definition $x :=$ is the first use of x in a block

Then

- When two assignments have the same rhs, they compute the same value

Example:

$x := y + z$ \hspace{1cm} x := y + z$

$\ldots \implies \ldots$

$w := y + z$ \hspace{1cm} w := x$

(the values of x, y, and z do not change in the \ldots code)
Copy Propagation

- If \(w := x \) appears in a block, replace subsequent uses of \(w \) with uses of \(x \)
 - Assumes single assignment form

- Example:

 \[
 \begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \cdot a
 \end{align*}
 \]

 \[
 \begin{align*}
 b & := z + y \\
 a & := b \\
 x & := 2 \cdot b
 \end{align*}
 \]

- Only useful for enabling other optimizations
 - Constant folding
 - Dead code elimination
Copy Propagation and Constant Folding

- Example:

\[
\begin{align*}
 a & := 5 \\
 x & := 2 \times a \\
 y & := x + 6 \\
 t & := x \times y
\end{align*}
\quad \Rightarrow
\begin{align*}
 a & := 5 \\
 x & := 10 \\
 y & := 16 \\
 t & := x \ll 4
\end{align*}
\]
Copy Propagation and Dead Code Elimination

- **If**
 - w := rhs appears in a basic block
 - w does not appear anywhere else in the program

- **Then the statement w := rhs is dead and can be eliminated**
 - Dead = does not contribute to the program’s result
 - Example: (a is not used anywhere else)

\[
\begin{align*}
x & := z + y & b & := z + y & b & := z + y \\
a & := x & \Rightarrow & a & := b & \Rightarrow & x & := 2 \times b \\
x & := 2 \times a & x & := 2 \times b
\end{align*}
\]
Applying Local Optimizations

- Each local optimization does little by itself
- Typically optimizations interact
 - Performing one optimization enables another
- Optimizing compilers repeat optimizations until no improvement is possible
 - The optimizer can also be stopped at any point to limit compilation time
An Example

- **Initial code:**

a := x ** 2
b := 3
c := x
d := c * c
e := b * 2
f := a + d
g := e * f
An Example

- **Algebraic optimization:**

 \[
 \begin{align*}
 a & := x ** 2 \\
 b & := 3 \\
 c & := x \\
 d & := c * c \\
 e & := b * 2 \\
 f & := a + d \\
 g & := e * f \\

 a & := x * x \\
 b & := 3 \\
 c & := x \\
 d & := c * c \\
 e & := b \ll 1 \\
 f & := a + d \\
 g & := e * f
 \end{align*}
 \]
An Example

- Copy Propagation:

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= c \times c \\
 e &:= b \ll 1 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]

 \[
 \begin{align*}
 a &:= x \times x \\
 b &:= 3 \\
 c &:= x \\
 d &:= x \times x \\
 e &:= 3 \ll 1 \\
 f &:= a + d \\
 g &:= e \times f
 \end{align*}
 \]
An Example

- Constant folding:

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 3 \ll 1 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := x \times x \\
 e & := 6 \\
 f & := a + d \\
 g & := e \times f
 \end{align*}
 \]
An Example

- Common subexpression elimination:

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := x \times x \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]

 \[
 a := x \times x \\
 b := 3 \\
 c := x \\
 d := a \\
 e := 6 \\
 f := a + d \\
 g := e \times f
 \]
An Example

- **Copy propagation:**

 a := x * x
 b := 3
 c := x
 d := a
 e := 6
 f := a + d
 g := e * f

 a := x * x
 b := 3
 c := x
d := a
 e := 6
 f := a + a
g := 6 * f
An Example

- **Dead code elimination:**

 \[
 \begin{align*}
 a & := x \times x \\
 b & := 3 \\
 c & := x \\
 d & := a \\
 e & := 6 \\
 f & := a + a \\
 g & := 6 \times f
 \end{align*}
 \]
Peephole Optimizations on Assembly Code

- These optimizations work on intermediate code
 - Target independent
 - But they can be applied on assembly language also

- **Peephole optimization is effective for improving assembly code**
 - The “peephole” is a short sequence of (usually contiguous) instructions
 - The optimizer replaces the sequence with another equivalent one (but faster)
Peephole Optimizations (Cont.)

- Write peephole optimizations as replacement rules
 \[i_1, \ldots, i_n \rightarrow j_1, \ldots, j_m \]
 where the rhs is the improved version of the lhs

- Example:
 \[\text{move } a \text{ } b, \text{move } b \text{ } a \rightarrow \text{move } a \text{ } b \]
 - Works if \text{move } b \text{ } a \text{ is not the target of a jump}

- Another example
 \[\text{addiu } a \text{ } a \text{ } i, \text{addiu } a \text{ } a \text{ } j \rightarrow \text{addiu } a \text{ } a \text{ } i+j \]
Many (but not all) of the basic block optimizations can be cast as peephole optimizations

- Example: addiu $a $b 0 → move $a $b
- Example: move $a $a → –
- These two together eliminate addiu $a $a 0

As for local optimizations, peephole optimizations must be applied repeatedly for maximum effect
Local Optimizations: Notes

- Intermediate code is helpful for many optimizations
- Many simple optimizations can still be applied on assembly language
- “Program optimization” is grossly misnamed
 - Code produced by “optimizers” is not optimal in any reasonable sense
 - “Program improvement” is a more appropriate term