Final Review

PLT-4115

Q1. Consider the basic block:

$$
\begin{aligned}
& y:=3 \\
& x:=y \\
& z:=4^{*} x
\end{aligned}
$$

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.
- For this example, what is the best order in which to apply the three optimizations, if each can be applied only once?
Ans: copy propagation, constant propagation, constant folding correct

Q2. Consider the basic block:

$$
\begin{aligned}
& y:=3 \\
& x:=y \\
& z:=4 * x
\end{aligned}
$$

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.
- For this example, What is the worst possible order (i.e., requires the most passes) for the basic block?

Ans: constant folding, constant propagation, copy propagation

Q3. Consider the following intermediate code:

1. $x:=5$
2. if $y>1$ goto Label3
3. Label1:
4. $w:=w+1$
5. if $y>2$ goto Label3
6. Label2:
7. q := 3
8. if $z<1$ goto Label1
9. Label3:
10.w := 2
11.if $z>1$ goto Label2
10. $q:=y+w$
a. Draw the CFG where each node is a BB.
b. Which variables are live immediately before the execution of statement 7 ? Assume only variable q is live after the statement in line 12.

Ans: y,z,w

Q3. Consider the following intermediate code:

1. $x:=5$
2. if $y>1$ goto Label3
3. Label1:
4. $w:=w+1$
5. if $y>2$ goto Label3
6. Label2:
7. q := 3
8. if $z<1$ goto Label1
9. Label3:
10.w := 2
11.if $z>1$ goto Label2
12.12: q := $y+w$
c. Assume the constant propagation algorithm has completed. Which of the following statements is true?

- $L _N$ is the statement at line N
- $C(L, v, i n)=C$ means that at the "in" of statement L variable v is some constant
- $C(L, v, i n)=T$ means v is not a constant.

C(L7,	w,	in)	$=T$
$C(L 2$,	y,	out $)$	$=$
$C(L 5$,	x,	out $)$	$=$
$C(L 4$,	y,	in)	$=T$
$C(L 8$,	z,	out $)$	$=$

Q3. Consider the following intermediate code:

1. $x:=5$
2. if $y>1$ goto Label3
3. Label1:
4. $w:=w+1$
5. if $y>2$ goto Label3
6. Label2:
7. q := 3
8. if $z<1$ goto Label1
9. Label3:
10.w := 2
11.if $z>1$ goto Label2
12.12: q := $y+w$
c. Assume the constant propagation algorithm has completed. Which of the following statements is true?

- $L _N$ is the statement at line N
- $C(L, v, i n)=C$ means that at the "in" of statement L variable v is some constant
- $C(L, v, i n)=T$ means v is not a constant.

$C(L 7$,	w,	in $)$	$=T$
$C(L 2$,	y,	out $)$	$=$
$C(L 5$,	x,	out $)$	$=$
$C(L 4$,	y,	in)	$=T$
$C(L 8$,	z,	out $)$	$=$

Q4. Consider the following intermediate code:

1. $x:=5, z:=2, y:=3$
2. if $y>1$ goto Label3
3. Label1:
4. $w:=w+1$
5. if $y>2$ goto Label3
6. Label2:
7. q := 3
8. if $z<1$ goto Label1
9. Label3:
10.w := 2
11.if $z>1$ goto Label2
12.12: q := $y+w$
a. Which lines (using the numbering given above) are now unreachable?

Do constant propagation and dead code elimination

1. $x:=5, z:=2, y:=3$
2. if $\mathrm{y}>1$ goto Label3
3. Label1:
4. $w:=w+1$
5. if $\mathrm{y}>2$ goto Label3
6. Label2:
7. $\mathrm{q}:=3$
8. if $z<1$ goto Label1
9. Label3:
10.w := 2
11.if $z>1$ goto Label2
$12 . q:=y+w$

Q5. Optimize the following intermediate code:

```
1: z:= 3
2: if b > 0 goto Label1
3: x := 1
4: y:=2
5: z:= x + y
6: goto Label2
7: Label1:
8: w := x + 1
9: y := x + 1
10: Label2:
11: a := x + y
12: b:= a * z
\(1: z:=3\)
2: if b>0 goto Label1
3: \(x:=1\)
4: \(y:=2\)
5: \(\mathrm{z}:=\mathrm{x}+\mathrm{y}\)
6: goto Label2
7: Label1:
8: \(w:=x+1\)
9: \(y:=x+1\)
10: Label2:
11: \(a:=x+y\)
12: b:= a * z
```

1: $z:=3$
2: if $b>0$ goto Label1
3: $x:=1$
4: $y:=2$
5: $z:=x+y 3$
6: goto Label2
7: Label1:
8: $w:=x+1 \quad$ Line 8 can also be removed if you
9: $y:=x+1 w$
10: Label2:
11: $\mathrm{a}:=\mathrm{x}+\mathrm{y}$
12: $b:=a * z 3$

Q6. Consider the following CFG

Q6. Consider the following CFG

Q6. Consider the following CFG

b. For the same program fragment, indicate whether each of the following expressions is "very busy"

- Very Busy Expressions: An expression is very busy at p if it is evaluated on every path from p before it changes in value. (Backward Must)

	$\mathrm{a}+1$	$\mathrm{~m}-1$	$\mathrm{a}+\mathrm{b}$	$\mathrm{b} * 47$	$\mathrm{x}+\mathrm{y}$	$\mathrm{b}+1$	$\operatorname{arr}[\mathrm{~b}]$
3	Y	N	Y	Y	N	N	N
7	Y	Y	N	N	N	N	N
10	N	N	N	N	N	N	N
14	Y	Y	N	N	N	N	N
15	N	N	N	N	N	N	N

