
Final Review
PLT-4115



Q1. Consider the basic block:

    y := 3

    x := y

    z := 4 * x

Now consider the local optimizations: 

- constant propagation

- copy propagation, 

- constant folding.

- For this example, what is the best order in which to apply the three 
optimizations, if each can be applied only once?
Ans: copy propagation, constant propagation, constant folding 

correct




Q2. Consider the basic block:

    y := 3

    x := y

    z := 4 * x

Now consider the local optimizations: 

- constant propagation

- copy propagation, 

- constant folding.

- For this example, What is the worst possible order (i.e., requires 
the most passes) for the basic block?

Ans: constant folding, constant propagation, copy propagation




Q3. Consider the following intermediate code:

a. Draw the CFG where each node is a BB.

1. x := 5

2. if y >1 goto Label3

3. Label1:

4. w := w + 1

5. if y > 2 goto Label3

6. Label2:

7. q := 3

8. if z  < 1 goto Label1

9. Label3:

10.w := 2

11.if z > 1 goto Label2

12. q := y + w

b. Which variables are live immediately 
before the execution of statement 7? 
Assume only variable q is live after the 
statement in line 12.

Ans: y,z,w




Q3. Consider the following intermediate code:

1. x := 5

2. if y >1 goto Label3

3. Label1:

4. w := w + 1

5. if y > 2 goto Label3

6. Label2:

7. q := 3

8. if z  < 1 goto Label1

9. Label3:

10.w := 2

11.if z > 1 goto Label2

12.12: q := y + w

c. Assume the constant propagation algorithm has 
completed. Which of the following statements is true?

- L_N is the statement at line N

- C(L,v,in) = C means that at the "in" of statement L 

variable v is some constant

- C(L,v,in) = ⊤ means v is not a constant.

C(L7, w, in) = T
C(L2, y, out) = C
C(L5, x, out) = C
C(L4, y, in) = T
C(L8, z, out) = C



Q3. Consider the following intermediate code:

1. x := 5

2. if y >1 goto Label3

3. Label1:

4. w := w + 1

5. if y > 2 goto Label3

6. Label2:

7. q := 3

8. if z  < 1 goto Label1

9. Label3:

10.w := 2

11.if z > 1 goto Label2

12.12: q := y + w

c. Assume the constant propagation algorithm has 
completed. Which of the following statements is true?

- L_N is the statement at line N

- C(L,v,in) = C means that at the "in" of statement L 

variable v is some constant

- C(L,v,in) = ⊤ means v is not a constant.

C(L7, w, in) = T
C(L2, y, out) = C
C(L5, x, out) = C
C(L4, y, in) = T
C(L8, z, out) = C



Q4. Consider the following intermediate code:

1. x := 5, z:= 2, y:= 3

2. if y >1 goto Label3

3. Label1:

4. w := w + 1

5. if y > 2 goto Label3

6. Label2:

7. q := 3

8. if z  < 1 goto Label1

9. Label3:

10.w := 2

11.if z > 1 goto Label2

12.12: q := y + w

a. Which lines (using the numbering given above) are now 
unreachable?

1. x := 5, z:= 2, y:= 3

2. if y >1 goto Label3

3. Label1:

4. w := w + 1

5. if y > 2 goto Label3

6. Label2:

7. q := 3

8. if z  < 1 goto Label1

9. Label3:

10.w := 2

11.if z > 1 goto Label2

12.q := y + w

Do constant propagation 
 and dead code elimination 



Q5. Optimize the following intermediate code:

1: z := 3

2: if b > 0 goto Label1

3: x := 1

4: y := 2

5: z := x + y

6: goto Label2

7: Label1:

8: w := x + 1

9: y := x + 1

10: Label2:

11: a := x + y

12: b := a * z

1: z := 3

2: if b > 0 goto Label1

3: x := 1

4: y := 2

5: z := x + y 3   

6: goto Label2

7: Label1:

8: w := x + 1

9: y := x + 1 w

10: Label2:

11: a := x + y

12: b := a * z 3

Line 8 can also be removed if you 

assume w will not be used after line 12



Q6. Consider the following CFG 

a. Which definitions reach the following uses:

i. The use of a in instruction 4. 1,8 

ii. The use of a in instruction 8. 1,8,13

iii. The use of b in instruction 6. 2,11 2




Q6. Consider the following CFG 

a. Which definitions reach the following uses:

i. The use of a in instruction 4. 1,8 

ii. The use of a in instruction 8. 1,8,13

iii. The use of b in instruction 6. 2,11 2




Q6. Consider the following CFG 

b. For the same program fragment, indicate whether 
each of the following expressions is “very busy”

• Very Busy Expressions: An expression is very busy 

at p if it is evaluated on every path from p before it 
changes in value. (Backward Must) 


