Final Review PLT-4115

Q1. Consider the basic block:

- y := 3 x := y
- z := 4 * x

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.

- For this example, what is the best order in which to apply the three optimizations, if each can be applied only once?

Ans: copy propagation, constant propagation, constant folding correct

Q2. Consider the basic block:

y := 3 x := y

z := 4 * x

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.
- For this example, What is the worst possible order (i.e., requires the most passes) for the basic block?

Ans: constant folding, constant propagation, copy propagation

Q3. Consider the following intermediate code:

1. x := 5 2. if y > 1 goto Label3 3. Label1: 4. w := w + 1 5. if y > 2 goto Label3 6. Label2: 7. q := 3 8. if z < 1 goto Label1 9. Label3: 10.w := 2 11. if z > 1 goto Label2 12. q := y + w

- a. Draw the CFG where each node is a BB.
- b. Which variables are live immediately before the execution of statement 7? Assume only variable q is live after the statement in line 12.

Ans: y,z,w

Q3. Consider the following intermediate code:

1. x := 5 2. if y > 1 goto Label3 3. Label1: 4. w := w + 1 5. if y > 2 goto Label3 6. Label2: 7. q := 3 8. if z < 1 goto Label1 9. Label3: 10.w := 2 11. if z > 1 goto Label2 12.12: q := y + w

c. Assume the constant propagation algorithm has completed. Which of the following statements is true?

- L_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L variable v is some constant
- $C(L,v,in) = \top$ means v is not a constant.

C(L7,	W,	in)	=	Т
C(L2,	У,	out)	=	С
C(L5,	Х,	out)	=	С
C(L4,	У,	in)	=	Т
C(L8,	Ζ,	out)	=	С

Q3. Consider the following intermediate code:

1. x := 5 2. if y > 1 goto Label3 3. Label1: 4. w := w + 1 5. if y > 2 goto Label3 6. Label2: 7. q := 3 8. if z < 1 goto Label1 9. Label3: 10.w := 2 11. if z > 1 goto Label2 12.12: q := y + w

c. Assume the constant propagation algorithm has completed. Which of the following statements is true?

- L_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L variable v is some constant
- $C(L,v,in) = \top$ means v is not a constant.

C(L7,	W,	in)	=	Т
C(L2,	У,	out)	=	С
C(L5,	Х,	out)	=	С
C(L4,	У,	in)	=	Т
C(L8,	Ζ,	out)	=	С

Q4. Consider the following intermediate code:

```
1. x := 5, z:= 2, y:= 3
2. if y > 1 goto Label3
3. Label1:
4. w := w + 1
5. if y > 2 goto Label3
6. Label2:
7. q := 3
8. if z < 1 goto Label1
9. Label3:
10.w := 2
11. if z > 1 goto Label2
12.12: q := y + w
```

a. Which lines (using the numbering given above) are now unreachable? **Do constant propagation** and dead code elimination 1. x := 5, z:= 2, y:= 3 2. if y > 1 goto Label3 3. Label1: 4. w := w + 15. if y > 2 goto Label3 6. Label2: 7. q := 3 8. if z < 1 goto Label1 9. Label3: 10.w := 2 11. if z > 1 goto Label2 12.q := y + w

Q5. Optimize the following intermediate code:

1: z := 3 2: if b > 0 goto Label1 3: x := 1 4: y := 2 5: z := x + y 6: goto Label2 7: Label1: 8: w := x + 1 9: y := x + 1 10: Label2: 11: a := x + y 12: b := a * z

1: z := 3 2: if b > 0 goto Label1 3: x := 1 4: y := 2 5: z := x + y 3 6: goto Label2 7: Label1: Line 8 can also be removed if you 8: w := x + 1 assume w will not be used after line 12 9: y := x + 1 w 10: Label2: 11: a := x + y 12: b := a * z 3

Q6. Consider the following CFG

a. Which definitions reach the following uses:

- . The use of a in instruction 4.
- ii. The use of a in instruction 8.
- iii. The use of b in instruction 6.

Q6. Consider the following CFG

- a. Which definitions reach the following uses:
 - . The use of a in instruction 4. 1,8
 - ii. The use of a in instruction 8. 1,8,13
 - iii. The use of b in instruction 6. 2,11

Q6. Consider the following CFG

- b. For the same program fragment, indicate whether each of the following expressions is "very busy"
 - Very Busy Expressions: An expression is very busy at p if it is evaluated on every path from p before it changes in value. (Backward Must)

	a + 1	m - 1	a + b	b * 47	x + y	b+1	arr[b]
3	Y	Ν	Y	Y	Ν	Ν	Ν
7	Y	Y	Ν	Ν	Ν	Ν	Ν
10	Ν	Ν	Ν	Ν	N	Ν	Ν
14	Y	Y	Ν	Ν	Ν	Ν	Ν
15	Ν	Ν	Ν	Ν	Ν	Ν	Ν