GLOBAL OPTIMIZATION

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin

Other Global Optimization:

- Constant Propagation
- Dead-code elimination
- Liveness analysis
- Common subexpression elimination
- Loop optimization

Local Optimization

- Recall the simple basic-block optimizations
- Constant propagation
- Dead code elimination

Global Optimization

- These optimizations can be extended to an entire control-flow graph

Global Optimization

- These optimizations can be extended to an entire control-flow graph

Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

Correctness (cont..)

To replace a use of x by a constant k we must know that:
On every path to the use of x, the last assignment to x is

$$
x:=k
$$

- The correctness condition is not trivial to check
- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
- An analysis of the entire control-flow graph

Global Analysis

- Global optimization tasks share several traits:
- The optimization depends on knowing a property X at a particular point in program execution
- Proving X at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires X to be true, then want to know either
- X is definitely true
- Don't know if X is true
- It is always safe to say "don't know"

Global Analysis (cont..)

- Global dataflow analysis is a standard technique for solving problems with these characteristics
- Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation (Cont.)

- To make the problem precise, we associate one of the following values with X at every program point

value	interpretation
\perp ("bottom")	This statement never executes
c	X = constant c
T ("top")	X is not a constant

Example

Using the Information

- Given global constant information, it is easy to perform the optimization
- Simply inspect the $x=$? associated with a statement using x
- If x is constant at that point replace that use of x by the constant
- But how do we compute the properties $x=$?

Using the Information

- The idea is to "push" or "transfer" information from one statement to the next
- For each statement s , we compute information about the value of x immediately before and after s

$$
\begin{aligned}
& C(s, x, \text { in })=\text { value of } x \text { before } s \\
& C(s, x, o u t)=\text { value of } x \text { after } s
\end{aligned}
$$

Transfer Functions

- Define a transfer function that transfers information one statement to another
- In the following rules, let statement s have immediate predecessor statements $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$

if $C\left(p_{i}, x\right.$, out $)=T$ for any i, then $C(s, x$, in $)=T$

$$
\begin{gathered}
C\left(p_{i}, x, \text { out }\right)=c \& C\left(p_{j}, x, \text { out }\right)=d \& d \diamond c \\
\text { then } C(s, x, \text { in })=T
\end{gathered}
$$

Rule 3

if $\mathrm{C}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{x}\right.$, out $)=\perp$ for all i , then $\mathrm{C}(\mathrm{s}, \mathrm{x}, \mathrm{in})=\perp$

- Rules 1-4 relate the out of one statement to the in of the next statement
- Now we need rules relating the in of a statement to the out of the same statement

Rule 5

$$
C(x:=c, x, o u t)=c \text { if } c \text { is a constant }
$$

Rule 7

$$
C(y:=\ldots, x, \text { out })=C(y:=\ldots, x, \text { in }) \text { if } x \diamond y
$$

Common subexpression elimination

- Example:

$$
\begin{array}{lll}
a:=b+c \\
c:=b+c \\
d:=b+c
\end{array} \quad \Rightarrow \quad \begin{aligned}
& a:=b+c \\
& c:=a \\
& d:=b+c
\end{aligned}
$$

- Example in array index calculations
- $c[i+1]:=a[i+1]+b[i+1]$
- During address computation, i+1 should be reused
- Not visible in high level code, but in intermediate code

Code Elimination

- Unreachable code elimination

- Construct the control flow graph
- Unreachable code block will not have an incoming edge
- After constant propagation/folding, unreachable branches can be eliminated
- Dead code elimination
- Ineffective statements
- $x:=y+1 \quad$ (immediately redefined, eliminate!)
- $\mathrm{y}:=5 \quad \Rightarrow \quad \mathrm{y}:=5$
- $x:=2^{*} z$
$x:=2$ * z
- A variable is dead if it is never used after last definition
- Eliminate assignments to dead variables
- Need to do data flow analysis to find dead variables

Function Optimization

- Function inlining
- Replace a function call with the body of the function
- Save a lot of copying of the parameters, return address, etc.
- Function cloning
- Create specialized code for a function for different calling parameters

Loop Optimization

- Loop optimization
- Consumes 90\% of the execution time
\Rightarrow a larger payoff to optimize the code within a loop
- Techniques
- Loop invariant detection and code motion
- Induction variable elimination
- Strength reduction in loops
- Loop unrolling
- Loop peeling
- Loop fusion

Loop Optimization

- Loop invariant detection

- If the result of a statement or expression does not change within a loop, and it has no external side-effect
- Computation can be moved to outside of the loop
- Example
for (i=0; i<n; $i++$) $a[i]:=a[i]+x / y$;
- Three address code

$$
\text { for }(i=0 ; i<n ; i++)\{c:=x / y ; a[i]:=a[i]+c ;\}
$$

$$
\Rightarrow c:=x / y \text {; }
$$

for (i=0; i<n; i++) a[i] :=a[i] + c;

Loop Optimization

- Code Motion
- Reduce frequency with which computation performed
- If it will always produce same result
- Especially moving code out of loop

```
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
```

```
for (i = 0; i < n; i++) {
    int ni = n*i;
    for (j = 0; j < n; j++)
    a[ni + j] = b[j];
```


Loop Optimization

- Strength reduction in loops

- Replace costly operation with simpler one
- Shift, add instead of multiply or divide
$16 *_{x}-->\quad x \ll 4$
- Depends on cost of multiply or divide instruction
- Recognize sequence of products

```
for (i = 0; i < n; i++)
    for (j = 0; j < n; j++)
        a[n*i + j] = b[j];
```

```
int ni = 0;
for (i = 0; i < n; i++) {
    a[ni + j] = b[j];
    ni += n;
}
```


Loop Optimization

- Strength reduction in loops

- Replace costly operation with simpler one
- Shift, add instead of multiply or divide
$16^{*} \mathrm{x} \quad$ - -> x << 4
- Depends on cost of multiply or divide instruction
- Recognize sequence of products

```
S := 0;
for (i=0; i<n; i++)
    V := 4 * i;
    S :=S + V;
}
```

```
s := 0;
for (i=0; i<n; i++)
    v := v + 4;
    S := S + v;
}
```


Loop Optimization

- Induction variable elimination
- If there are multiple induction variables in a loop, can eliminate the ones which are used only in the test condition
- Example

$$
\begin{aligned}
& s:=0 ; \text { for }(i=0 ; i<n ; i++)\left\{s:=4^{*} i ; \ldots\right\} \text {-- } i \text { is not referenced in loop } \\
& \Rightarrow s:=0 ; e:=4^{*} n ; \text { while }(s<e)\{s:=s+4 ;\}
\end{aligned}
$$

Code Optimization Techniques

- Loop unrolling
- Execute loop body multiple times at each iteration
- Get rid of the conditional branches, if possible
- Allow optimization to cross multiple iterations of the loop
- Especially for parallel instruction execution
- Space time tradeoff
- Increase in code size, reduce some instructions
- Loop peeling
- Similar to unrolling
- But unroll the first and/or last few iterations

Loop Optimization

- Loop fusion
- Example
for $\mathrm{i}=1$ to N do

$$
\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+1
$$

endfor
for $\mathrm{i}=1$ to N do
$\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}] / 2$
endfor
for $\mathrm{i}=1$ to N do
$D[i]=1 / C[i+1]$
endfor
for $\mathrm{i}=1$ to N do

$$
\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+1
$$

$$
\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}] / 2
$$

$$
\mathrm{D}[\mathrm{i}]=1 /
$$

$$
\mathrm{C}[\mathrm{i}+1]
$$

endfor

Loop Optimization

- Loop fusion
- Example
for $\mathrm{i}=1$ to N do

$$
\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+1
$$

endfor
for $\mathrm{i}=1$ to N do
$\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}] / 2$
endfor
for $\mathrm{i}=1$ to N do
$D[i]=1 / C[i+1]$
endfor

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { to } \mathrm{N} \text { do } \\
& \qquad \begin{array}{l}
\mathrm{A}[\mathrm{i}]=\mathrm{B}[\mathrm{i}]+1 \\
\mathrm{C}[\mathrm{i}]=\mathrm{A}[\mathrm{i}] / 2 \\
\mathrm{D}[\mathrm{i}]=1 / \mathrm{C}[\mathrm{i}+1]
\end{array} \\
& \text { endfor } \\
& \begin{array}{l}
\text { Is this correct? } \\
\text { Actually, cannot fuse } \\
\text { the third loop }
\end{array}
\end{aligned}
$$

Limitations of Compiler Optimization

- Operate Under Fundamental Constraint
- Must not cause any change in program behavior under any possible condition
- Often prevents it from making optimizations when would only affect behavior under pathological conditions.
- Behavior that may be obvious to the programmer can be obfuscated by languages and coding styles
- e.g., data ranges may be more limited than variable types suggest
- Most analysis is performed only within procedures
- whole-program analysis is too expensive in most cases
- Most analysis is based only on static information
- compiler has difficulty anticipating run-time inputs
- When in doubt, the compiler must be conservative

