
Ben Lowman

KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for

Complex Systems Programs

Select graphs borrowed from conference presentation.

Cristian Cadar, Daniel Dunbar, Dawson Engler
Stanford University

https://isis.poly.edu/pa/Week%2002%20-%20Microsoft%20SAGE%20and%20LLVM%20KLEE/klee-stanford-2009.pdf

Systems Code is Hard!

● Complex control flow
● C “type system”
● Pointers!
● Environmental

dependencies
● Resiliency

requirements
● Resource constraints

KLEE to the rescue!

OSDI 2008, Best Paper Award

● Leverages symbolic execution,
constraint solving

● Automatically generates high
coverage test suites
○ 90% on average in approximately

160 applications
● Finds deep bugs in complex systems

programs
○ Including “hard”, “high level” bugs

Symbolic Execution int bad_abs(int x)
{
 if (x < 0)

 return –x;
 if (x == 1234)
 return –x;
 return x;
}

KLEE Architecture

Does is scale?

Environment?

lol k

Scalability Challenges
● Exponential number of paths (path explosion)
● Constraint solving is NP-Complete
● Environment is arbitrarily complex

jmp <input>

Exponential Search Space

State representation takes up a lot of space

● Copy on write for memory objects
● Common heap structures are shared among states

Exploration can easily get “stuck” -- use search heuristics

● Coverage optimized search
● Random path search

Expensive Constraint Solving

● Dominates Runtime -- 92
percent!
○ NP-Complete
○ Invoked at every

branch/assert
○ Can’t really be avoided

● Several optimizations
○ Expression rewriting /

simplification / concretization
○ Constraint independence
○ Predicate caching

Z3 Example

http://rise4fun.com/Z3/smtc_bv
http://rise4fun.com/Z3/smtc_bv

Constraint Independence

…
…
if (x < 4)
{

...
}

…

x + z < 120
a & b = a
argc > 1

x < 4

Branches usually only reference a few program variables

Predicate Caching
Saving the results of previous predicates can speed up future
queries to theorem prover

Huge Speedup

Handling the Environment
● Environment often exposes edge cases

○ What we really care about
● Extremely important if tool is to be useful in “real world”

void foo(int fd, char input)
{

fwrite(fd, input, 1);
char c;
fread(fd, &c, 1);
If (c == input)

*0;
}

Environment Models

int fd = open(“file.txt”, O_RDONLY);

If all arguments are concrete, forward to the host operating
system and proceed with a concrete value

int fd = open(my_file, O_RDONLY);

Otherwise, a user-programmed model is created to handle
abstract interactions with the environment.

Sample File System Model

“Out of the box” models for input, output, pipes, links, ttys and over 40 system
calls (2500 LOC)

abstract

concrete

Test Suite
● GNU Coreutils:

○ 89 apps installed on almost all UNIX systems
○ Variety of functions, authors, env. interaction
○ Heavily tested, mature code

● Busybox:
○ 75 “coreutils”
○ lightweight clone of GNU coreutils
○ Lots of overlapping functionality

Test Suite (cont.)

Evaluation

● Fully automatic runs
● Run KLEE for one hour on each program
● Run resulting test cases on uninstrumented program
● Measure line coverage using gcov

○ Eliminates unintended KLEE bias

Coreutils Coverage
Overall: 84%, Average: 91%, Median: 95%

16 at 100%

BusyBox Coverage
Overall: 91%, Average: 94%, Median: 98%

31 at 100%

KLEE vs. Manual Testing

KLEE vs. Random Testing

Random

Correctness Bugs

“One way to look at KLEE is that it automatically translates a
path through a C program into a form that a theorem prover

can reason about.”

func() { … }
…
if (func() matches spec.)
{

...
assert_true:
…

}

func() { … }
…
assert(func() matches spec.)

Crosschecking
If f(x) and g(x) implement the same interface:

1. Make input x symbolic
2. Run KLEE on assert(f(x) == g(x))
3. If KLEE terminates without errors, then f(x) are g(x)

semantically equivalent

Mismatches found between coreutils and busybox.

Limitations

● Still can’t solve the halting problem
● Finding bugs is completely dependent on the precision of

models
● S L O W
● C-specific
● Limited by theorem prover

“The functions in STP’s input language include concatenation,
extraction, left/right shift, sign-extension, unary minus, addition,

multiplication, (signed) modulo/division, bitwise Boolean operations,
if-then-else terms, and array reads and writes. The predicates in the

language include equality and (signed) comparators between bitvector
terms.”

Questions?

Demo

http://klee.doc.ic.ac.uk
http://klee.doc.ic.ac.uk

