KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for
Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler
Stanford University

Ben Lowman

Select graphs borrowed from conference presentation.

https://isis.poly.edu/pa/Week%2002%20-%20Microsoft%20SAGE%20and%20LLVM%20KLEE/klee-stanford-2009.pdf

Systems Code is Hard!

Complex control flow
C “type system”
Pointers!
Environmental
dependencies
Resiliency
requirements
Resource constraints

send(to,

{

from, count)
register short *to, *from;
register count;

register n = (count + 7) / 8;

switch (count %
0:

case
case
case
case
case
case
case
case

R N W s U1 oy
(1] (1] (1] (1] (1] (1] (1]

8) {

do { *to = *fromt+;
*to = *fromt+;
*to = *fromt+;
*to = *fromt+;
*to = *fromt+;
*to = *fromt+;
*to = *fromt+;
*to = *fromt+;

} while (--n > 0);

KLEE to the rescue!

OSD/ 2008, Best Paper Award

e |everages symbolic execution,
constraint solving
e Automatically generates high
coverage test suites
o 90% on average in approximately
160 applications
e Finds deep bugs in complex systems

programs
o Including “hard”, “high level” bugs

Symbolic Execution

TRUE

X <

return -X

v

test1.out

X = x
|

X =

TRUE

1234

retu

I -X

Y

test2.out

FALSE

FALSE

X #

int bad_abs(int x)
{
if (x<0)
return —x;
if (x==1234)
return —x;
return x;

}

1234

retu

' X

|

test3.out

KLEE Architecture

L
LLVM
DC coce 7 :> \I; EQD bytecodj
M J
!
SYMBOLIC
ENVIRONMENT | “T KLEE | C—
] e
Fol 5
x=20 ~
x #1234 |[X=3

X =-2
- x=3 |

g 7

Constraint Solver (STP)

Does is scale?

Scalability Challenges

e Exponential number of paths (path explosion)
e Constraint solving is NP-Complete
e Environment is arbitrarily complex

P
jmp <input>

-

Exponential Search Space

State representation takes up a lot of space

e Copy on write for memory objects
e Common heap structures are shared among states

Exploration can easily get “stuck” -- use search heuristics

e (Coverage optimized search
e Random path search

Expensive Constraint Solving

e Dominates Runtime -- 92 PO o I
percent! - == .
o NP-Complete ?
o Invoked at every =
branch/assert
o Can't really be avoided — :
e Several optimizations
o Expression rewriting / e D

IIIIIIIIII

simplification / concretization
o Constraint independence
o Predicate caching

Princess&

Z3 Example

http://rise4fun.com/Z3/smtc_bv
http://rise4fun.com/Z3/smtc_bv

Constraint Independence

Branches usually only reference a few program variables

X+z2<120
a&b:a
if (x <4) argc > 1

{ 4

X<4

Predicate Caching

Saving the results of previous predicates can speed up future
gueries to theorem prover

2*y<100
X>3
Xx+y>10

2*y<100
Xx+y>10

2*y<100
X >3

x+y>10
x <10

X=D5

> y = 15

Eliminating constraints —> X=5
cannot invalidate solution y=15
Adding constraints often :> X=093
does not invalidate solution y =15

Huge Speedup

300
— Base
= |rrelevant Constraint Elimination
- Caching
295 | — lIrrelevant Constraint Elimination + Caching
0
o 150
£
|_
75 1
0

0 0.25 0.5 0.75 1

Executed instructions (normalized)

Handling the Environment

e Environment often exposes edge cases
o What we really care about
e Extremely important if tool is to be useful in “real world”

void foo(int Fd, char input)
{
fwrite(fd, input, 1);
char c;
fread(fd, &c, 1);
If (c == input)
*0Q:

Environment Models

int f[d = open(“file.txt”, O_RDONLY);

If all arguments are concrete, forward to the host operating
system and proceed with a concrete value

int f[d = open(my_File, O_RDONLY);

Otherwise, a user-programmed model is created to handle
abstract interactions with the environment.

Sample File System Model

1 : ssize_t read(int fd, void *buf, size_t count) {
2 : if (is_invalid(fd)) {
g : errno = EBADF;
4 : return —1;
5: ¥
6 : struct klee_fd *f = &fds[fd];
abstract =) (7 . i (is_concrete_file(f)) {
8 : int r = pread(f—>real_fd, buf, count, f—>off);
9 : if (r = —1)
10: f—>off +=r;
11: return r;
concrete) |12: } else {
13: I* sym files are fixed size: don’t read beyond the end. */
14: if (f—>off >= f—>size)
15 return O;
16: count = min(count, f—>size — f—>off);
17: memcpy(buf, f—>file_data + f—>off, count);
18: f—>off += count;
19: return count;
20: }
21: }

“Out of the box” models for input, output, pipes, links, ttys and over 40 system
calls (2500 LOC)

Test Suite

e GNU Coreutils:
o 89 apps installed on almost all UNIX systems
o Variety of functions, authors, env. interaction
o Heavily tested, mature code

e Busybox:
o 75 “coreutils”
o lightweight clone of GNU coreutils
o Lots of overlapping functionality

1992-10-31 Jim Meyering Add parentheses to expressions like (c = *p++) as per...
1992-10-31 Jim Meyering Add parentheses to expressions like (c = *p++) as per...
1992-10-31 Jim Meyering (adjust_blocks): Convert to a macro. The static
1992-10-31 Jim Meyering Initial revision

Test Suite (cont.)

60
53
L 45
O
©
©
2 30
©
Is)
) 16
Qo 15 |
E
§)
p 5 4 1 3 X
0 ; | | — L,
N Q S Q Q Q o Q
P S S P P P S S
;o X o) © A pe) s S
> S S S $ > > &
v oS N S S Al S o

Executable Lines of Code (ELOC)

Evaluation

Fully automatic runs

Run KLEE for one hour on each program

Run resulting test cases on uninstrumented program
Measure line coverage using gcov

o Eliminates unintended KLEE bias

Coreutils Coverage

100% 1

N
a
X

Coverage (ELOC %)

0%

50%

25% 1

Overall: 84%, Average: 91%, Median: 95%

16 at 100%

12

23 34 45 56

Apps sorted by KLEE coverage

67

78

89

BusyBox Coverage

100% -

ELOC %)

~ 50% -

Coverage

0%

75%

Overall: 91%, Average: 94%, Median: 98%

25% 1

31 at 100%

13

25 37 49
Apps sorted by KLEE coverage

61

KLEE vs. Manual Testing

KLEE coverage — Manual coverage

100% -
Avg/utility
| |KLEE__|91%
° Manual | 68%
40% - B
10% -
et 1l H ”{
J“UJ Apps sorted by KLEE coverage — Manual coverage
20% T

KLEE vs. Random Testing

KLEE coverage — Manual coverage

100%
Avg/utility
KLEE 94% m
s 1 Random | 44%
48% | .
22% -
ol
A Bttt

13 25 37 49 61
Apps sorted by KLEE coverage — Manual coverage

Correctness Bugs

“One way to look at KLEE is that it automatically translates a
path through a C program into a form that a theorem prover
can reason about.”

func() {...}

”:(func() matches spec.) func() { ...}

{ =)
assert(func() matches spec.)

assert_true:

Crosschecking

If f(x) and g(x) implement the same interface:
1. Make input x symbolic
2. Run KLEE on assert(f(x) == g(x))

3. If KLEE terminates without errors, then f(x) are g(x)
semantically equivalent

Mismatches found between coreutils and busybox.

int main() {
unsigned Xx,y;
make_symbolic(&x, sizeof(x));
make_symbolic(&y, sizeof(y));
assert(mod(x,y) == mod_opt(x,y));
return O;

Limitations

Still can’t solve the halting problem

Finding bugs is completely dependent on the precision of
models

SLOW

C-specific

Limited by theorem prover

“The functions in STP’s input language include concatenation,
extraction, left/right shift, sign-extension, unary minus, addition,
multiplication, (signed) modulo/division, bitwise Boolean operations,
if-then-else terms, and array reads and writes. The predicates in the
language include equality and (signed) comparators between bitvector
terms.”

Questions?

http://klee.doc.ic.ac.uk
http://klee.doc.ic.ac.uk

