
A Large Scale Study of Programming Languages
and Code Quality in Github

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Premkumar Devanbu
{bairay@, dpposnett@, filkov@cs., devanbu@cs.}ucdavis.edu

Department of Computer Science, University of California, Davis, CA, 95616, USA

ABSTRACT

What is the effect of programming languages on software qual-
ity? This question has been a topic of much debate for a very long
time. In this study, we gather a very large data set from GitHub
(728 projects, 63 Million SLOC, 29,000 authors, 1.5 million com-
mits, in 17 languages) in an attempt to shed some empirical light
on this question. This reasonably large sample size allows us to use
a mixed-methods approach, combining multiple regression model-
ing with visualization and text analytics, to study the effect of lan-
guage features such as static v.s. dynamic typing, strong v.s. weak
typing on software quality. By triangulating findings from differ-
ent methods, and controlling for confounding effects such as team
size, project size, and project history, we report that language de-
sign does have a significant, but modest effect on software quality.
Most notably, it does appear that strong typing is modestly better
than weak typing, and among functional languages, static typing is
also somewhat better than dynamic typing. We also find that func-
tional languages are somewhat better than procedural languages. It
is worth noting that these modest effects arising from language de-
sign are overwhelmingly dominated by the process factors such as
project size, team size, and commit size. However, we hasten to
caution the reader that even these modest effects might quite possi-
bly be due to other, intangible process factors, e.g., the preference
of certain personality types for functional, static and strongly typed
languages.

1. INTRODUCTION
A variety of debates ensue during discussions whether a given

programming language is “the right tool for the job". While some
of these debates may appear to be tinged with an almost religious
fervor, most agree that programming language choice can impact
both the coding process and the resulting artifact.

Advocates of strong static typing tend to believe that an ounce
of prevention is worth a pound of cure and that the static approach
catches defects early. Dynamic typing advocates argue, however,
that conservative static type checking is wasteful of developer re-
sources, and that it is better to rely on strong dynamic type check-
ing to catch type errors as they arise. These debates, however, have
largely been of the armchair variety, often the supporting evidence
tends to be anecdotal.

This is perhaps not unreasonable; obtaining empirical evidence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

to support such claims is a challenging task given the number of
other factors that influence software engineering outcomes, such
as code quality, language properties, and usage domains. Consid-
ering software quality, for example, there are a number of well-
known influential factors, including code size [6], team size [2],
and age/maturity [9], and indeed, such process factors can effec-
tively predict defect localities [25].

Controlled experiments are certainly one approach to examining
the impact of language choice in the face of such daunting con-
founds, however, owing to cost, such studies typically introduce a
confound of their own, i.e., limited scope. The tasks completed in
such studies are necessarily limited and seldom compare to a typ-
ical real world application. There have been several such studies
recently that use students, or compare languages with static or dy-
namic typing through an experimental factor [7, 15, 12].

If we want to study this problem from an observational point of
view, we need a large body of software projects to study. GitHub
contains many projects in multiple languages that vary substantially
across size, age, and number of developers. Each project reposi-
tory provides a historical record from which we extract contribu-
tion history, project size, authorship, and defect repair. We then use
a variety of tools to study the effects of language features on de-
fect occurrence. Our approach is best described as mixed-methods,
or triangulation [5] approach; we use text analysis, clustering, and
visualization to confirm and support the findings of a quantitative
regression study.

While the use of regression analysis to deal with confounding
variables is not without controversy, we submit that the use of a
large sample size and the triangulation of our results from qualita-
tive methods increase the credibility of our quantitative results.

2. METHODOLOGY
Our methods are typical of large scale observational studies in

software engineering. We first gather our data from several sources
using largely automated methods. We then filter and clean the data
in preparation for building a statistical model. We further vali-
date the model using qualitative methods. Filtering choices are
driven by a combination of factors including the nature of our re-
search questions, the quality of the data and beliefs about which
data is most suitable for statistical study. In particular, GitHub con-
tains many projects written in a large number of programming lan-
guages. For this study, we focused our data collection efforts on the
most popular projects written in the most popular languages. We
choose statistical methods appropriate for evaluating the impact of
factors on count data.

2.1 Data Collection
We choose the top 19 programming languages from GitHub. We

disregard CSS, Shell script, and Vim script as they are not consid-
ered to be general purpose languages. We further include Type-
Script, a typed superset of JavaScript. Then, for each of the
studied languages we retrieve the top 50 projects that are primarily
written in that language. Table 1 shows the top three projects in
each language, based on their popularity. In total, we analyze 850
projects spanning 17 different languages.

Our language and project data was extracted from the GitHub

Archive, a database that records all public GitHub activities. The
archive logs eighteen different GitHub events including new com-
mits, fork events, pull request, developers’ information, and issue
tracking of all the open source GitHub projects on an hourly ba-
sis. The archive data is uploaded to Google BigQuery service to
provide an interface for interactive data analysis.

Table 1: Top three projects in each language

Language Projects

C linux, git, php-src
C++ node-webkit, phantomjs, mongo
C# SignalR, SparkleShare, ServiceStack
Objective-C AFNetworking, GPUImage, RestKit
Go docker, lime, websocketd
Java storm, elasticsearch, ActionBarSherlock
CoffeeScript coffee-script, hubot, brunch
JavaScript bootstrap, jquery, node
TypeScript typescript-node-definitions, StateTree, typescript.api
Ruby rails, gitlabhq, homebrew
Php laravel, CodeIgniter, symfony
Python flask, django, reddit
Perl gitolite, showdown, rails-dev-box
Clojure LightTable, leiningen, clojurescript
Erlang ChicagoBoss, cowboy, couchdb
Haskell pandoc, yesod, git-annex
Scala Play20, spark, scala

Identifying top languages. We aggregate projects based on their
primary language. Then we select the top languages having max-
imum number of projects for further analysis as shown in Table 1.
Since multiple languages are often used to develop a project, as-
signing a single language to a project is difficult. Github Archive
stores information gathered fom GitHub Linguist which can mea-
sure the language distribution of a GitHub project repository by
using the extensions of a project’s source files. The language with
the maximum number of source files is assigned as the primary

language of the project.
Retrieving popular projects. For each selected language, we

filter the project repositories written primarily in that language by
its popularity based on the number of stars associated to that project.
The number of starts indicates how many people have actively indi-
cated an interest in the project. We assume that this is a reasonable
indication of project popularity and select the top 50 projects in
each language.

To ensure that these projects have a sufficient development his-
tory, we filter out the projects having fewer than 28 commits, where
28 is the first quartile commit number of all projects under consid-
eration. This leaves us with 728 projects. Table 1 shows the top
three projects in each language.

Retrieving project evolution history. For each of the 728 projects,
we downloaded the non merged commits, commit logs, author date,
and author name using the command: git log -no-merges

-numstat. The numstat flag shows the number of added and
deleted lines per file associated with each commit which we use
to compute code churn and the number of files modified per com-
mit. We also retrieve the languages associated with each commit
from the extensions of the modified files. Note that, one commit
can have multiple language tags. For each commit, we calculate its
commit age by subtracting its commit date from the first commit

of the corresponding project. We also calculate some other project
related statistics, including maximum commit age of a project and
the total number of developers. These variables are used as con-
trol variables in our regression model, discussed in Section 3. We
further identify the bug fix commits made to individual projects by
searching for error related keywords: ‘error’, ‘bug’, ‘fix’ , ‘issue’,
‘mistake’, ‘incorrect’, ‘fault’, ‘defect’ and ‘flaw’ in the commit log
using a heuristic similar to that in Mockus and Votta [18].

Table 2 summarizes our data set. Since a project may use multi-
ple languages, the second column of the table shows the total num-
ber of projects that use a certain language at some capacity. We
further exclude some languages from a project that have fewer than
20 commits in that language, where 20 is the first quartile value of
the total number of commits per project per language. For exam-
ple, we find 220 projects that use more than 20 commits in C. This
ensures that the studied languages have significant activity within
the projects.

In summary, we study 728 projects developed in 17 languages
with 18 years of parallel evolution history. This includes 29 thou-
sand different developers, 1.57 million commits, and 564,625 bug
fix commits.

2.2 Categorizing Languages
We define language classes based on several properties of the

language thought to influence language quality [7, 8, 12], as shown
in Table 3. The Programming Paradigm indicates whether the
project is written in a procedural, functional, or scripting language.

Compilation Class indicates whether the project is statically or
dynamically typed.

Type Class classifies languages based on strong and weak typing,
based on whether the language admits type-confusion. We consider
that a program introduces type-confusion when it attempts to inter-
pret a memory region populated by a datum of specific type T1, as
an instance of a different type T2 and T1 and T2 are not related by
inheritance. We classify a language as strongly typed if it explicitly
detects type confusion and reports it as such. Strong typing could
happen by static type inference within a compiler (e.g., with Java),
using a type-inference algorithm such as Hendley-Milner [10, 17],
or at run-time using a dynamic type checker. In contrast, a language
is weakly-typed if type-confusion can occur silently (undetected),
and eventually cause errors that are difficult to localize. For exam-
ple, in a weakly typed language like JavaScript adding a string
to a number is permissible (e.g., ‘5’ + 2 = ‘52’), while such an op-
eration is not permitted in strongly typed Python. Also, C and
C++ are considered weakly typed since, due to type-casting, one
can interpret a field of a structure that was an integer as a pointer.

Finally, Memory Class indicates whether the language requires
developers to manage memory. We treat Objective-C as un-
managed, though Objective-C follows a hybrid model, because
we observe many memory errors in Objective-C codebase, as
discussed in RQ4 in Section 3.

2.3 Identifying Project Domain
We classify the studied projects into different domains based on

their features and function using a mix of automated and manual
techniques. The projects in GitHub come with project descriptions

and Readme files that describe their features. We used Latent
Dirichlet Allocation(LDA) [3], a well-known topic analysis algo-
rithm to analyze this text. Given a set of documents, LDA identi-
fies a set of topics where each topic is represented as probability
of generating different words. For each document, LDA also esti-
mates the probability of assigning that document to each topic.

We detect 30 distinct domains, i.e. topics, and estimate the prob-

Table 2: Study Subjects

Project Details Total Commits BugFix Commits

Language #Projects #Authors SLOC Period #Commits #Insertion #Bug Fixes #Insertion
(KLOC) (KLOC) (KLOC)

C 220 13,769 22,418 1/1996 to 2/2014 447,821 75,308 182,568 20,121
C++ 149 3,831 12017 8/2000 to 2/2014 196,534 45,970 79,312 23,995
C# 77 2,275 2,231 6/2001 to 1/2014 135,776 27,704 50,689 8,793
Objective-C 93 1,643 600 7/2007 to 2/2014 21,645 2,400 7,089 723
Go 54 659 591 12/2009 to 1/2014 19,728 1,589 4,423 269
Java 141 3,340 5,154 11/1999 to 2/2014 87,120 19,093 35,128 7,363
CoffeeScript 92 1,691 260 12/2009 to 1/2014 22,500 1,134 6,312 269
JavaScript 432 6,754 5,816 2/2002 to 2/2014 118,318 33,134 39,250 8,676
TypeScript 14 240 546 10/2012 to 2/2014 3,272 1,915 870 273
Ruby 188 9,574 1,656 1/1998 to 1/2014 122,023 5,804 30,478 1,649
Php 109 4,862 3,892 12/1999 to 2/2014 118,664 16,164 47,194 5,139
Python 286 5,042 2,438 8/1999 to 2/2014 114,200 9,033 41,946 2,984
Perl 106 758 86 1/1996 to 2/2014 5,483 471 1,903 190
Clojure 60 843 444 9/2007 to 1/2014 28,353 1,461 6,022 163
Erlang 51 847 2484 05/2001 to 1/2014 31,398 5,001 8,129 1,970
Haskell 55 925 837 01/1996 to 2/2014 46,087 2,922 10,362 508
Scala 55 1,260 1,370 04/2008 to 1/2014 55,696 5,262 12,950 836

Summary 728 28,948 62,840 1/1996 to 2/2014 1,574,618 254,365 564,625 83,921

Table 3: Different Types of Language Classes

Language
Classes

Categories Languages

Programming

Paradigm

Procedural C, C++, C#, Objective-C,
Java, Go

Scripting CoffeeScript, JavaScript,
Python, Perl, Php, Ruby

Functional Clojure, Erlang, Haskell,
Scala

Compilation

Class

Static C, C++, C#, Objective-C,
Java, Go, Haskell, Scala

Dynamic CoffeeScript, JavaScript,
Python, Perl, Php, Ruby,
Clojure, Erlang

Type Class Strong C#, Java, Go, Python, Ruby,
Clojure, Erlang, Haskell,
Scala

Weak C, C++, Objective-C,
CoffeeScript, JavaScript,
Perl, Php

Memory Class Managed Others
Unmanaged C, C++, Objective-C

Table 4: Characteristics of Domains

Domain Domain Example Total

Name Characteristics Projects Proj

Application end user programs. bitcoin, macvim 120
(APP)

Database sql and nosql mysql, mongodb 43
(DB) databases

CodeAnalyzer compiler, parser ruby, php-src 88
(CA) interpreter etc.

Middleware Operating Systems, linux, memcached 48
(MW) Virtual Machine, etc.

Library APIs, libraries etc. androidApis, 175
(LIB) opencv

Framework SDKs, plugins ios sdk, coffeekup 206
(FW)

Other - Arduino, autoenv 49
(OTH)

ability that each project belonging to each domain. For exam-
ple, LDA assigned the facebook-android-sdk project to the fol-
lowing topic with high probability: (0.042 ∗ facebook + 0.010 ∗

swank/slime+0.007∗framework+0.007∗environments.+
0.007 ∗ transforming). Here, the text values are the topics and
the numbers are their probability of belonging to that domain; for
clarity, we only show the top 5 domains.

Since such auto-detected domains include several project-specific
keywords, such as facebook, swank/slime as shown in the previous
example, it is hard to identify the underlying common functionali-
ties. In order to assign a meaningful name to each domain, we man-
ually inspect each of the thirty domains to identify project-name-
independent, domain-identifying keywords.

For example, for the domain described earlier, we identify the
keywords framework, environments, and transforming to call it de-

velopment framework.
We manually rename all the thirty auto-detected domains in sim-

ilar manner and find that the majority of the projects fall under six
domains: Application, Database, CodeAnalyzer, Middleware, Li-
brary, and Framework.

We also find that some projects like “online books and tutorials”,
“scripts to setup environment”, “hardware programs” etc. do not
fall under any of the above domains and so we assign them to a
catchall domain labeled as Other.

This classification of projects into domains was subsequently
checked and confirmed by another member of our research group.
Table 4 summarizes the identified domains resulting from this pro-
cess. In our study set, the Framework domain has the greatest num-
ber of projects (206), while the Database domain has the fewest
number of projects (43).

2.4 Categorizing Bugs
While fixing software bugs, developers often leave important in-

formation in the commit logs about the nature of the bugs; e.g., why
the bugs arise, how to fix the bugs. We exploit such information to
categorize the bugs, similar to Tan et al. [13, 26].

First, we categorize the bugs based on their Cause and Impact.
Root Causes are further classified into disjoint sub-categories of er-
rors—Algorithmic, Concurrency, Memory, generic Programming,
and Unknown.

The bug Impact is also classified into four disjoint sub-categories:
Security, Performance, Failure, and other unknown categories.

Table 5: Categories of bugs and their distribution in the whole dataset

Bug Type Bug Description Search keywords/phrases count %count

Cause

Algorithm (Algo) algorithmic or logical errors algorithm 606 0.11
Concurrancy (Conc) multi-threading or multi-processing

related issues
deadlock, race condition, synchronization error. 11111 1.99

Memory (Mem) incorrect memory handling memory leak, null pointer, buffer overflow, heap
overflow, null pointer, dangling pointer, double
free, segmentation fault.

30437 5.44

Programming (Prog) generic programming errors exception handling, error handling, type error,
typo, compilation error, copy-paste error, refactor-
ing, missing switch case, faulty initialization, de-
fault value.

495013 88.53

Impact

Security (Sec) correctly runs but can be exploited
by attackers

buffer overflow, security, password, oauth, ssl 11235 2.01

Performance (Perf) correctly runs with delayed re-
sponse

optimization problem, performance 8651 1.55

Failure (Fail) crash or hang reboot, crash, hang, restart 21079 3.77

Unknown (Unkn) not part of the above seven cate-
gories

5792 1.04

Thus, each bug fix commit has a Cause and a Impact type. For
example, a Linux bug corresponding to the bug fix message: “re-
turn if prcm_base is NULL.... This solves the following crash" 1

was caused due to a missing check (programming error), and the
associated impact was a crash (failure).

Table 5 shows the description of each bug category. This classi-
fication is performed in two phases:

(1) Keyword search. We randomly choose 10% of the bug-fix
messages and use a keyword based search technique to automati-
cally categorize the messages with potential bug types.

We use this annotation, separately, for both Cause and Impact
types. We chose a restrictive set of keywords and phrases as shown
in Table 5.

For example, if a bug fix log contains any of the keywords: dead-
lock, race condition or synchronization error, we infer it is related
to the Concurrency error category.

Such a restrictive set of keywords and phrases help to reduce
false positives.

(2) Supervised classification. We use the annotated bug fix logs
from the previous step as training data for supervised learning tech-
niques to classify the remainder of the bug fix messages by treating
them as test data. We first convert each bug fix message to a bag-of-
words. We then remove words that appear only once among all of
the bug fix messages. This reduces project specific keywords. We
also stem the bag-of-words using standard natural language pro-
cessing (NLP) techniques. Finally, we use a well-known supervised
classifier: Support Vector Machine(SVM) to classify the test data.

To evaluate the accuracy of the bug classifier, we manually an-
notated 180 randomly chosen bug fixes, equally distributed across
all of the categories. We then compare the result of the automatic
classifier with the manually annotated data set. The following table
summarizes the result for each bug category.

precision recall

Performance 70.00% 87.50%
Security 75.00% 83.33%
Failure 80.00% 84.21%
Memory 86.00% 85.71%
Programming 90.00% 69.23%
Concurrency 100.00% 90.91%
Algorithm 85.00% 89.47%

Average 83.71% 84.34%

The result of our bug classification is shown in Table 5. In the
Cause category, we find most of the bugs are related to generic pro-
1https://lkml.org/lkml/2012/12/18/102

gramming errors (88.53%). Such a high proportion is not surprising
because it involves a wide variety of programming errors including
incorrect error handling, type errors, typos, compilation errors, in-
correct control-flow, and data initialization errors. The rest 5.44%
appear to be incorrect memory handling; 1.99% are concurrency
bugs, and 0.11% are algorithmic errors. Analyzing the impact of
the bugs, we find 2.01% are related to security vulnerability; 1.55%
are performance errors, and 3.77% causes complete failure to the
system. Our technique could not classify 1.04% of the bug fix mes-
sages in any Cause or Impact category; we classify these with the
Unknown type.

2.5 Statistical Methods
We use regression modeling to describe the relationship of a set

of predictors against a response. In this paper, we model the num-
ber of defective commits against other factors related to software
projects. All regression models use negative binomial regression,
or NBR to model the counts of project attributes such as the num-
ber of commits. NBR is a type of generalized linear model used
to model non-negative integer responses. It is appropriate here as
NBR is able to handle over-dispersion, e.g., cases where the re-
sponse variance is greater than the mean [4].

In our models we control for several language per-project de-
pendent factors that are likely to influence the outcome. Conse-
quently, each (language, project) pair is a row in our regression and
is viewed as a sample from the population of open source projects.
We log-transform dependent count variables as it stabilizes the vari-
ance and usually improves the model fit [4]. We verify this by
comparing transformed with non transformed data using the AIC
and Vuong’s test for non-nested models.

To check that excessive multi-collinearity is not an issue, we
compute the variance inflation factor (VIF) of each dependent vari-
able in all of the models. Although there is no particular value of
VIF that is always considered excessive, we use the commonly used
conservative value of 5 [4]. We check for and remove high lever-
age points through visual examination of the residuals vs leverage
plot for each model, looking for both separation and large values of
Cook’s distance.

We employ effects, or contrast, coding in our study to facili-
tate interpretation of the language coefficients [4]. Weighted ef-
fects codes allow us to compare each language to the average effect
across all languages while compensating for the unevenness of lan-
guage usage across the projects [24].

To test for the relationship between two factor variables we use
a Chi-Square test of independence [14]. After confirming a depen-

https://lkml.org/lkml/2012/12/18/102

dence we use Cramer’s V, an r× c equivalent of the phi coefficient
for nominal data, to establish an effect size.

3. RESULTS
We begin with a straightforward question that directly addresses

the core of what some fervently believe must be true, namely:

RQ1. Are some languages more defect prone than others?

We compare the impact of each language on the number of de-
fects with the average impact of all languages against defect fixing
commits using a regression model. The model details are shown in
Table 6.

We include some variables as controls for factors that will clearly
influence the response. Project age is included as older projects will
generally have a greater number of defect fixes. Trivially, the num-
ber of commits to a project will also impact the response. Addi-
tionally, the number of developers who touch a project and the raw
size of the project are both expected to grow with project activity.

The sign and magnitude of the Estimate in the above model re-
lates the predictors to the outcome. The first four variables are
control variables and we are not interested in their impact on the
outcome other than to say, in this case, that they are all positive,
as expected, and significant. The language variables are indica-
tor, or factor, variables for each project. The coefficient compares
each language to the grand weighted mean of all languages in all
projects. The language coefficients can be broadly grouped into
three general categories. The first category are those for which the
coefficient is statistically insignificant and the modeling procedure
could not distinguish the coefficient from zero. These languages
may behave similarly to the average or they may have wide vari-
ance. The remaining coefficients are significant and either positive
or negative. For those with positive coefficients we can expect that
the language is associated with, ceteris paribus, a greater number
of defect fixes. These languages include C, C++, Objective-C,
Php, and Python. The languages Clojure, Haskell, Ruby,
and Scala, all have negative coefficients implying that these lan-
guages are less likely than average to result in defect fixing com-

Table 6: Some languages induce fewer defects than other languages.

Response is the number of defective commits.Languages are coded with

weighted effects coding so each language is compared to the grand

mean. AIC=10432, BIC=10542, Log Likelihood = -5194, Deviance=1156,
Num. obs.=1076

Defective Commits Model Coef. Std. Err.
(Intercept) −2.04 (0.11)∗∗∗

log age 0.06 (0.02)∗∗∗

log size 0.04 (0.01)∗∗∗

log devs 0.06 (0.01)∗∗∗

log commits 0.96 (0.01)∗∗∗

C 0.11 (0.04)∗∗

C++ 0.18 (0.04)∗∗∗

C# −0.02 (0.05)
Objective-C 0.15 (0.05)∗∗

Go −0.11 (0.06)
Java −0.06 (0.04)
CoffeeScript 0.06 (0.05)
JavaScript 0.03 (0.03)
TypeScript 0.15 (0.10)
Ruby −0.13 (0.05)∗∗

Php 0.10 (0.05)∗

Python 0.08 (0.04)∗

Perl −0.12 (0.08)
Clojure −0.30 (0.05)∗∗∗

Erlang −0.03 (0.05)
Haskell −0.26 (0.06)∗∗∗

Scala −0.24 (0.05)∗∗∗
∗∗∗

p < 0.001, ∗∗p < 0.01, ∗p < 0.05

mits.

Df Deviance Resid. Resid. Pr(>Chi)
Df Dev

NULL 1075 25176.25
log commits 1 4256.89 1071 1286.74 0.0000
log age 1 8011.52 1074 17164.73 0.0000
log size 1 10082.78 1073 7081.95 0.0000
log devs 1 1538.32 1072 5543.63 0.0000
language 16 130.78 1055 1155.96 0.0000

One should take care not to overestimate the impact of language on
defects. While these relationships are statistically significant, the
effects are quite small. As shown above in the analysis of deviance
table, language accounts for less than one percent of the total de-
viance of the model. Note that all variables are significant, that
is, all of the factors account for some of the variance in the num-
ber of defective commits. While the interpretation of percentage
of deviance is roughly similar to a percentage of the total variance
explained in an ordinary least squares regression, it is not accurate
to say that the measures are synonymous; About the best we can do
is to observe that it is a small affect [4].

We can read the coefficients as the expected change in the log of
the response for a one unit change in the predictor with all other
predictors held constant; i.e., for a coefficient βi, a one unit change
in βi yields an expected change in the response of eβi . For the
factor variables, this expected change is compared the grand mean,
i.e., the average across all languages. Thus, if, for some number
of commits, a particular project developed in an average language
had four defective commits, then the choice to use C++ would
mean that we should expect one additional buggy commit since
e0.18×4 = 4.79. For the same project, choosing Haskell would
mean that we should expect about one fewer defective commit as
e−0.26

×4 = 3.08. The accuracy of this prediction is dependent on
all other factors remaining the same, a challenging proposition for
all but the most trivial of projects. All observational studies face
similar limitations and we address this concern in more detail in
section 5.

Result 1: Some languages have a greater association with

defects than other languages, although the effect is small.

In the remainder of this paper we expand on this basic result
by considering how different categories of application, defect, and
language, lead to further insight into the relationship between lan-
guages and defect proneness.

Software bugs usually fall under two broad categories: (1) Do-

main Specific bug: specific to project function and do not depend
on the underlying programming language. For example, we find a
bug fix in Linux with log message: “Fix headset mic support for
Asus X101CH". The bug was due to a missing functionality [23]
in Asus headset2 and less to do with language feature. Prior re-
search term these errors as Software Component bugs [13, 26]. (2)
Generic bug: more generic in nature that has less to do with project
function. For example, type-errors, concurrency errors, etc.

Consequently, it is reasonable to think that the interaction of ap-
plication domain and language might impact the number of defects
within a project. Since some languages are believed to excel at
some tasks more so than others, e.g., C for low level work, or Java
for user applications, making an inappropriate choice might lead to
a greater number of defects. To study this we should ideally ignore
the domain specific bugs as generic bugs are more likely to depend

2https://bugs.launchpad.net/ubuntu/+source/
linux/+bug/1169138

https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1169138
https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1169138

on the programming language featured. However, since a domain
specific bug may also arise due to a generic programming error, it is
difficult to separate the two. A possible workaround is to study lan-
guages while controlling the domain. Statistically, however, with
17 languages across 7 domains, the large number of terms would
be challenging to interpret given the sample size.

Given this, we first consider testing for the dependence between
domain and language usage within a project, using a Chi-Square
test of independence. Of 119 cells, 46, i.e. 39%, are below the
value of 5 which is too high. No more than 20% of the counts
should be below 5 [14]. We include the value here for complete-
ness3, however, the low strength of association of 0.191 as mea-
sured by Cramer’s V, suggests that any relationship between do-
main and language is small and that inclusion of domain in regres-
sion models would not produce meaningful models.

One option to address this concern would be to remove lan-
guages or combine domains, however, our data here presents no
clear choices. Alternatively, we could combine languages; this
choice leads to a related but slightly different question.

RQ2. Which language properties relate to defects?

Rather than considering languages individually, we aggregate
them by language class, as described in Section 2.2, and analyze
the relationship between defects and language class. Broadly, each
of these properties divides languages along some line that is often
discussed in the context of errors, drives user debate, or have been
the subject of prior work. To arrive at the six factors in the model
we combined all of these factors across all of the languages in our
study.

Ideally, we would want to include each of the separate proper-
ties in the regression model so that we can assert with some assur-
ance that a particular property is responsible for particular defects.
The properties are highly correlated, however, and models with all
properties are not stable. Hence, we model the impact of the six
different factors on the number of defects while controlling for the
same basic covariates that we used in the model in RQ1.

Table 7: Functional languages have a smaller relationship to defects

than other language classes where as procedural languages are either

greater than average or similar to the average. Language classes are

coded with weighted effects coding so each language is compared to the

grand mean. AIC=10419, Deviance=1132, Num. obs.=1067

Defective Commits
(Intercept) −2.13 (0.10)∗∗∗

log commits 0.96 (0.01)∗∗∗

log age 0.07 (0.01)∗∗∗

log size 0.05 (0.01)∗∗∗

log devs 0.07 (0.01)∗∗∗

Functional-Static-Strong-Managed −0.25 (0.04)∗∗∗

Functional-Dynamic-Strong-Managed −0.17 (0.04)∗∗∗

Proc-Static-Strong-Managed −0.06 (0.03)∗

Script-Dynamic-Strong-Managed 0.001 (0.03)
Script-Dynamic-Weak-Managed 0.04 (0.02)∗

Proc-Static-Weak-Unmanaged 0.14 (0.02)∗∗∗
∗∗∗

p < 0.001, ∗∗p < 0.01, ∗p < 0.05

As with language, we are comparing language classes with the
average behavior across all languages. The model is presented in
Table 7. It’s clear that Script-Dynamic-Strong-Managed
class has the smallest magnitude coefficient. The coefficient is in-
significant, i.e., the z-test for the coefficient cannot distinguish the
coefficient from zero. Given the magnitude of the standard er-
ror, however, we can can assume that the behavior of languages
in this class is very close to the average behavior across all lan-
guages. We confirm this by recoding the coefficient using Proc-
3Chi-Squared value of 243.6 with 96d.f. and p = 8.394e− 15

-Static-Weak-Unmanaged as the base level and employing
treatment, or dummy coding that compares each language class
with the base level. In this case, Script-Dynamic-Strong-
-Managed is significantly different with p = 0.00044. We note
here that while choosing different coding methods affects the co-
efficients and z-scores, the models are identical in all other re-
spects. When we change the coding we are rescaling the coeffi-
cients to reflect the comparison that we wish to make [4]. Compar-
ing the other language classes to the grand mean, Proc-Static-
-Weak-Unmanaged languages are more likely to induce defects.
This implies that either weak typing or memory management is-
sues contribute to greater defect proneness as compared with other
procedural languages.

Among scripting languages we observe a similar relationship be-
tween weak and strong typing. This is some evidence that weak vs
strong typing is more likely responsible for this difference as op-
posed to memory management, we cannot state this conclusively
given the correlation between factors. However, as a group, strongly
typed languages are less error prone than average while the weakly
typed languages are more error prone than the average. The con-
trast between static and dynamic typing is also visible in functional
languages.

The functional languages as a group show a strong difference
from the average. Compared to all other language types, both
Functional-Dynamic-Strong-Managed and Function-
al-Static-Strong-Managed languages show a smaller rela-
tionship with defects. Statically typed languages have substantially
smaller coefficient yet both functional language classes have the
same standard error. This is strong evidence that functional static
languages are less error prone than functional dynamic languages,
however, the z-tests only test whether the coefficients are different
from zero. In order to strengthen this assertion we recode the model
as above using treatment coding and observe that the Function-
al-Static-Strong-Managed language class is significantly
less defect prone than the Functional-Dynamic-Strong-

-Managed language class with p = 0.034.

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1066 32995.23
log commits 1 31634.32 1065 1360.91 0.0000
log age 1 51.04 1064 1309.87 0.0000
log size 1 50.82 1063 1259.05 0.0000
log devs 1 31.11 1062 1227.94 0.0000
Lang. Class 5 95.54 1057 1132.40 0.0000

As with the relationship between language and defects, the re-
lationship between language class and defects is based on a small
effect. The deviance explained is shown in the anova table above
and is similar, although smaller, to the deviance related to language
and, consequently, has a similar interpretation.

Having discussed the relationship between language class and
defects, we revisit the question of application domain.As before we
ask whether domain has an interaction with language class. Does
the choice of, e.g., a functional language, have an advantage for
a particular domain? For this pair of factors, the contingency ta-
ble confirms to assumptions. As above, a Chi-Square test for the
relationship between these factors and the project domain yields
a value of 99.0494 and df = 30 with p = 2.622e − 09 allow-
ing us to reject the null hypothesis that the factors are independent.
Cramer’s-V yields a value of 0.133, a weak level of association.
Consequently, although there is some relation between domain and
language, there is only a weak relationship between domain and
language class.

Result 2: There is a small but significant relationship be-

tween language class and defects. Functional languages have

a smaller relationship to defects than either procedural or

scripting languages.

It is somewhat unsatisfying that we do not observe a strong as-
sociation between language, or language class, and domain within
a project. However, an alternative way to view this same data is to
aggregate defects over all languages and domains, disregarding the
relationship to projects. Since we cannot view this data as indepen-
dent samples, we do not attempt to analyze it statistically, rather we
take a descriptive, visualization based approach.

We define Defect Proneness as the ratio of bug fix commits over
total commits per language per domain. Figure 1 illustrates the in-
teraction between domain and language using a heat map, where
the defect proneness increases from lighter to darker zone. We in-
vestigate which language factors influence defect fixing commits
across a collection of projects written across a variety of languages.
This leads to the following research question:

RQ3. Does language defect proneness depend on domain?

A first glance at Figure 1(a) reveals that defect proneness of the
languages indeed depends on the domain. For example, in the
Middleware domain JavaScript is most defect prone (31.06%
defect proneness). This was little surprising to us since Java-

Script is typically not used for Middleware. On a closer look, we
find that JavaScript has only one project, v8 (Google’s Java-
Script virtual machine), in the Middleware domain that is re-
sponsible for all of the errors. This pattern repeats for several other
domains which suggests that variation of defect density of the do-
mains with languages may be an attribute of individual projects.
To verify this, we re-evaluate domain-language interaction after ig-
noring observed outliers. We filter out the projects that have defect
density below 10 percentile and above 90 percentile. Figure 1(b)
shows the result. Note that, the outliers’ effects are also controlled
in all our regression models as we filter them out as high leverage
points, as discussed in Section 2.5.

The previously observed variation is subdued in the new heat
map and what remains is a result of the inherent defect proneness
of the languages, as we have seen in RQ1. To validate this, we
measure the pairwise rank correlation between the language defect
proneness for each domain with the Overall. For all of the domains,
the correlation is positive, and p-values are significant (< 0.01)
except for the Database domain. Thus, w.r.t. defect proneness, with
the exception of the Database domain, language ordering in each
domain is strongly correlated with the overall language ordering.

APP CA DB FW LIB MW

Spearman 0.71 0.56 0.30 0.76 0.90 0.46
Corr.

p-value 0.00 0.02 0.28 0.00 0.00 0.09

Result 3: There is no general relationship between domain

and language defect proneness.

We have shown that different languages induce a larger number
of defects and that this relationship is not only related to particular
languages but holds for general classes of languages, however, we
find that the type of project doesn’t mediate this relationship to a
large degree. We now turn our attention to categorization of the
response. We want to understand how language relates to specific

kinds of defects and how this relationship compares to the more
general relationship that we observe. We divide the defects into
categories as described in Table 5 and ask the following question:

RQ4. What is the relation between language & bug category?

We use a mixed-method analysis to understand the relation be-
tween languages and bug categories. First, using a descriptive,
visualization based approach similar to RQ3, we study the rela-
tion between bug categories and language class. A heat map (see
Figure 2) shows aggregated defects over language classes and bug
types and illustrate an overall relationship between language class
and the bug categories.

To understand the interaction between bug categories with indi-
vidual languages, we use a separate NBR model, as discussed in
RQ1, for each bug category. For each of these models we use the
same control factors as RQ1 as well as languages encoded with
weighted effects as predictors, with the number of defect fixing
commits belong to that category as a response.

The results are shown in Table 8. For these models we present
only a subset of the anova coefficients as the distribution of de-
viance explained is very similar to the language model presented
in Table 6 and its associated anova table. The overall deviance for
each model is substantially smaller and the proportion explained
by language for a specific defect type is similar in magnitude for
most of the categories. We interpret this relationship to mean that
language has a greater impact on specific categories of bugs, than
it does on bugs overall. In the next section we expand on these re-
sults for the bug categories with significant bug counts as reported
in Table 5. However, our conclusion generalizes for all categories.

Programming Errors. Generic programming errors account for
around 88.53% of all bug fix commits and occur in all the lan-
guage classes. The regression analysis draws a similar conclusion
as of RQ1 (see Table 6) since programming errors represent the
majority of the studied fixes. All languages incur programming
errors such as faulty error-handling, faulty object and variable def-
initions, incorrect data initialization, typos, etc.. Some errors are
still more language-specific. For example, we find 122 runtime er-
rors in JavaScript that do not appear in TypeScript, and
similarly, TypeScript has more type related errors.

Memory Errors. Memory errors account for 5.44% of all the
bug fix commits. The heat map in Figure 2 shows a strong rela-
tionship between Proc-Static-Weak-Unmanaged class and
memory errors. This is expected as languages with unmanaged
memory type are known for memory bugs. Regression analysis
in Table 8 also confirms that languages with unmanaged mem-
ory type, e.g.,C, C++, and Objective-C introduce a statistically
greater number of memory errors. Among the managed languages,
Java has a greater than average number of memory errors, al-
though fewer than the unmanaged languages. Although Java has
its own garbage collector, memory leaks are not surprising since
unused object references often prevent the garbage collector from
reclaiming memory [11]. In fact, we notice 28.89% of all the mem-
ory errors in Java are the result of a memory leak. In terms of
effect size, language has a larger impact on memory defects than
all other cause categories.

Concurrency Errors. 1.99% of the total bug fix commits are
related to Concurrency Errors. The heat map shows that Proc-
-Static-Weak-Unmanaged dominates this error type. C and
C++ introduce 19.15% and 7.89% of the errors, and they are dis-
tributed across the projects. Table 8 shows that this relationship is
significant.

Language classes Proc-Static-Strong-Managed and Functional-
-Static-Strong-Managed are also in the darker zone in the

Scala
Haskell
Erlang
Clojure

Perl
Python

Php
Ruby

Typescript
Javascript

Coffeescript
Java

Go
Objective−C

C#
C++

C

Application
CodeAnalyzer

Database
Framework

Library Middleware
Overall

Domain

L
a

n
g

u
a

g
e

20

40

60
bug_pcent

(a) Variation of defect proneness across languages for a given domain

Scala
Haskell
Erlang
Clojure

Perl
Python

Php
Ruby

Typescript
Javascript

Coffeescript
Java

Go
Objective−C

C#
C++

C

Application
CodeAnalyzer

Database
Framework

Library Middleware
Overall

Domain

L
a

n
g

u
a

g
e

10

20

30

40

bug_pcent

(b) Variation of defect proneness across languages for a given domain

after removing the outliers

Figure 1: Interaction between language’s defect proneness and domain

Each cell in the heat map represents defect proneness of a language (row header) for a given domain (column header). The ‘Overall’ column represents defect proneness of a

language over all the domains. The cells with white cross mark indicate null value, i.e. no commits were made corresponding to that cell.

Table 8: While the impact of language on defects varies across defect category, language has a greater impact on specific categories than it does on

defects in general. For all models above the deviance explained by language type has p < 0.0003076.

Memory Concurrency Security Failure
(Intercept) −7.49 (0.46)∗∗∗ −8.13 (0.74)∗∗∗ −7.29 (0.58)∗∗∗ −6.21 (0.41)∗∗∗

log commits 0.99 (0.05)∗∗∗ 1.09 (0.09)∗∗∗ 0.89 (0.07)∗∗∗ 0.88 (0.05)∗∗∗

log age 0.15 (0.06)∗ 0.19 (0.10) 0.30 (0.08)∗∗∗ 0.07 (0.06)
log size 0.01 (0.04) −0.08 (0.07) −0.01 (0.05) 0.14 (0.04)∗∗∗

log devs 0.07 (0.04) 0.09 (0.07) 0.07 (0.06) −0.11 (0.04)∗

C 1.71 (0.12)∗∗∗ 0.39 (0.22) 0.28 (0.18) 0.43 (0.13)∗∗

C# −0.12 (0.17) 0.81 (0.24)∗∗∗ −0.42 (0.23) −0.07 (0.16)
C++ 1.08 (0.10)∗∗∗ 1.07 (0.18)∗∗∗ 0.40 (0.16)∗ 1.05 (0.11)∗∗∗

Objective-C 1.40 (0.15)∗∗∗ 0.41 (0.28) −0.14 (0.24) 1.10 (0.15)∗∗∗

Go −0.05 (0.25) 1.62 (0.30)∗∗∗ 0.35 (0.28) −0.49 (0.24)∗

Java 0.53 (0.14)∗∗∗ 0.80 (0.22)∗∗∗ −0.07 (0.19) 0.15 (0.14)
CoffeeScript −0.41 (0.23) −1.73 (0.54)∗∗ −0.36 (0.27) −0.05 (0.19)
JavaScript −0.16 (0.10) −0.21 (0.16) 0.02 (0.12) −0.15 (0.09)
TypeScript −0.58 (0.62) −0.63 (1.02) 0.37 (0.51) −0.42 (0.41)
Ruby −1.16 (0.19)∗∗∗ −0.89 (0.29)∗∗ −0.18 (0.21) −0.32 (0.16)∗

Php −0.69 (0.17)∗∗∗ −1.70 (0.34)∗∗∗ 0.11 (0.21) −0.62 (0.17)∗∗∗

Python −0.48 (0.14)∗∗∗ −0.25 (0.22) 0.36 (0.16)∗ 0.04 (0.12)
Perl 0.15 (0.35) −1.23 (0.83) −0.62 (0.45) −0.64 (0.38)
Scala −0.47 (0.18)∗∗ 0.63 (0.24)∗∗ −0.22 (0.22) −0.93 (0.18)∗∗∗

Clojure −1.21 (0.27)∗∗∗ −0.01 (0.30) −0.82 (0.27)∗∗ −0.62 (0.19)∗∗

Erlang −0.60 (0.23)∗∗ 0.63 (0.28)∗ 0.62 (0.22)∗∗ 0.59 (0.17)∗∗∗

Haskell −0.28 (0.20) −0.27 (0.32) −0.45 (0.26) −0.49 (0.20)∗

AIC 2991.47 2210.01 3328.39 4086.42
BIC 3101.15 2319.70 3437.91 4196.03
Log Likelihood -1473.73 -1083.01 -1642.19 -2021.21
Deviance 895.02 665.17 896.58 1043.02
Num. obs. 1081 1081 1073 1077
Residual Deviance (NULL) 5065.3 2124.93 2170.23 3769.7
Language Type Deviance 522.86 139.67 42.72 240.51
∗∗∗

p < 0.001, ∗∗p < 0.01, ∗p < 0.05

heat map. The major languages that contribute concurrency errors
from these classes are Go, C++, Java, C#, and Scala. These re-
sults confirm, in general static languages statistically produce more
concurrency errors than others. Among the dynamic languages,
only Erlang is more prone to concurrency errors. The regression
analysis also shows that projects written in dynamic languages like
CoffeeScript, Ruby, and Php have fewer concurrency errors
(note statistically significant negative coefficients, in Table 8).

C C++ C# Java Scala Go Erlang
race 63.11 41.46 77.7 65.35 74.07 92.08 78.26
deadlock 26.55 43.36 14.39 17.08 18.52 10.89 15.94
SHM 28.78 18.24 9.36 9.16 8.02 0 0
MPI 0 2.21 2.16 3.71 4.94 1.98 10.14

A textual analysis based on word-frequency of the bug fix mes-
sages suggests that most of the concurrency errors occur due to a
race condition, deadlock, or incorrect synchronization, as shown

in the table above. In all the languages, race condition is most
frequent cause, ranging from 41% in C++ to 92% in Go. The en-
richment of race condition errors in Go is likely because the Go is
distributed with a race-detection tool that may advantage Go devel-
opers in detecting races. Deadlocks are also noteworthy, ranging
from 43.36% in C++ to 10.80% in Go. The synchronization errors
are mostly related to message passing (MPI) or shared memory op-
eration (SHM). Erlang and Go use MPI (which does not require
locking of shared resources) for inter-thread communication, which
explains why these two languages do not have any SHM related er-
rors like locking, mutex etc. In contrast, projects in the other lan-
guages use SHM primitives for communication and can thus may
have locking-related errors.

Security and Other Impact Errors. Around 7.33% of all the
bug fix commits are related to Impact errors. Among them Er-

lang, C++, and Python produce more security errors than av-

func−dynamic−strong−managed

func−static−strong−managed

proc−static−strong−managed

proc−static−weak−unmanaged

script−dynamic−strong−managed

script−dynamic−weak−managed

Algo Concurrency
Failure Memory

Performance
Programming

Security

Bug Type

L
a
n
g
u
a
g
e
 C

la
s
s

Figure 2: Relation between bug categories and language class
Each cell represents percentage of bug fix commit out of all bug fix commits per
language class (row header) per bug category (column header). The values are

normalized column wise.

erage (Table 8). The regression also suggests that projects writ-
ten in Clojure are less likely to introduce a security error (Fig-
ure 2). From the heat map we also see that Static languages are
in general more prone to failure and performance errors, followed
by Functional-Dynamic-Strong-Managed languages. In
the later category, Erlang is more prone to induce a failure. The
analysis of deviance results confirm that language is strongly asso-
ciated with failure impacts. While security errors are the weakest
among the categories, with respect to the residual deviance of the
model, the deviance explained by language is still quite strong.

Result 4: Defect types are strongly associated with lan-

guages; Some defect type like memory error, concurrency er-

rors also depend on language primitives. Language matters

more for specific categories than it does for defects overall.

4. RELATED WORK
Prior work on programming language comparison falls in three

categories: (1) Controlled Experiment: For a given task, develop-
ers are monitored while programming in different languages. Re-
searchers then compare outcomes such as development effort and
program quality. Hanenberg et al. [7] compared static vs. dynamic
typing by monitoring 48 programmers for 27 hours while devel-
oping a parser program. They found no significant difference in
code quality between the two. However, dynamic type-based lan-
guage have shorter development time. Their study was conducted
with undergraduate students in a lab setting with custom-designed
language and IDE. Our study, by contrast is a field study of popu-
lar software applications. While we can only indirectly (and post

facto) control for confounding factors using regression, we bene-
fit from much larger sample sizes, and more realistic, widely-used
software. We find that statically typed languages in general are less
defect prone than the dynamic types, and that strong typing is better
than weak typing in the same regard. The effect sizes are modest;
it could be reasonably argued that they are visible here precisely
because of the large sample sizes.

Harrison et al. [8] compared C++, a procedural language, with
SML, a functional language, finding no significant difference in to-
tal number of errors, although SML has higher defect density than
C++. SML was not represented in our data, which however, sug-
gest that functional languages are generally less defect prone than
procedural languages. Another line of work primarily focuses on
comparing development effort across different languages [12, 20].
However, they do not analyze language defect proneness.

(2) Surveys: Meyerovich et al. survey developers’ views of pro-
gramming languages, to study why some languages are more popu-
lar than others[16]. They report strong influence from non-linguistic
factors: prior language skills, availability of open source tools, and
existing legacy systems. Such factors also arise in our findings:
we confirm that availability of external tools also impact software
quality; Go has lot more concurrency bugs related to race condition
due to its race condition detection tool (see RQ4 in Section 3).
(3) Repository Mining: Bhattacharya et al. [1] study four projects
developed in both C and C++ and find that the software compo-
nents developed in C++ are in general more reliable than C. We
find that both C and C++ are more defect prone than average defect
proneness of all the studied languages, although C++ has a higher
regression coefficient (0.18) than C (0.11) (see Table 6). However,
for certain bug types like concurrency errors, C is more defect prone
than C++ (see RQ4 in Section 3).

5. THREATS TO VALIDITY
We recognize few threats to our reported results. First, to iden-

tify bug fix commits we did not check the bug database; instead
we rely on the keywords that developers often use to indicate a
bug fix commit. Our choice was deliberate. We wanted to capture
the issues that developers continuously face in an ongoing devel-
opment process, not just the reported bugs. However, such choice
possesses threats of over estimation. Our categorization of the do-
mains is subjected to interpreter’s bias, although another member
of our group verified the categories. Also, our effort to categorize a
large number of bug fix commits could potentially raise some ques-
tions. Especially, the categorization can be tainted by the initial
choice of keywords. Also, the descriptiveness of commit logs vary
across the projects. To mitigate the threat, we evaluate our classifi-
cation against manual annotation as discussed in Section 2.4.

We determine the language of a file based on its extension, using
GitHub Linguist.This can be error prone if a file written in a dif-
ferent language takes a common language extension that we have
studied. To reduce such error, we manually verified language cate-
gorization to a randomly sampled file set.

To interpret the language classes in Section 2.2, we make cer-
tain assumptions based on how a language property is most com-
monly used, as reflected in our data set. For instance, we classify
Objective-C as unmanaged memory type, although it may fol-
low a hybrid memory model. Similarly, we annotate Scala as
functional and C# as procedural language, although they support
both procedural and functional design [19, 21].We do not distin-
guish object-oriented languages (OOP) in this work as there is no
clear distinction between pure OOP languages and procedural lan-
guages.The difference largely depends on programming style. We
categorize C++ as weakly typed because a memory region of a cer-
tain type can be treated differently using pointer manipulation [22].
However, depending on the compiler some C++ type errors can
be detected in compile time. We further exclude TypeScript
from our language classification model (see Table 3 and Table 7);
TypeScript is intended to be used as a static, strongly typed lan-
guage. However, in practice, we notice that developers often (for
50% of the variables, and in all the TypeScript-using projects
in our dataset) use any type, a catch-all union type, and thus makes
TypeScript dynamic and weak.

Finally, we associate defect fixing commits to language proper-
ties, although they could reflect reporting style or other developer
properties. Availability of external tools or libraries may also im-
pact the extent of bugs associated with a language.

6. CONCLUSION

We have presented a large scale study of language type and use,
as it relates to software quality. The Github data we used is char-
acterized by its complexity and the variance along multiple dimen-
sions of language, language type, usage domain, amount of code,
sizes of commits, and the various characteristics of the many issue
types.

Our sample-size allows a mixed-methods study of the effects of
language, while controlling for a number of confounds. Through
a combination of regression modeling, text analytics, and visual-
ization, we have examined the interactions of language, domain,
and defect type. The data indicates functional languages are better
than procedural languages; it suggests that strong typing is better
than weak typing; that static typing is better than dynamic; and that
managed memory usage is better than unmanaged. Further, that
the defect proneness of languages in general is not associated with
software domains. Also, languages are more related to individual
bug categories than bugs overall.

On the other hand, even large datasets become small and insuf-
ficient when they are sliced and diced many ways simultaneously,
i.e. when the underlying connectivity between variables is rich. The
implications are that the more dependent variables there are, the
more difficult it becomes (vis-a-vis the amount of data available) to
answer questions about a specific variable’s effect on any outcome
where interactions with other variables exist. Hence, we are unable
to quantify the specific effects of language type on usage. Addi-
tional methods such as surveys could be helpful here. Addressing
these challenges remains for future work.

7. ACKNOWLEDGEMENTS
We thank Sameer Khatri for cross checking domain categoriza-

tion. We acknowledge support from the National Science Founda-
tion under Grants No. CCF-1247280 and CCF-1446683 and from
AFOSR award FA955-11-1-0246.

8. REFERENCES
[1] P. Bhattacharya and I. Neamtiu. Assessing programming

language impact on development and maintenance: A study
on c and c++. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages
171–180, New York, NY, USA, 2011. ACM.

[2] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu.
Don’t touch my code!: examining the effects of ownership
on software quality. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on

Foundations of software engineering, pages 4–14. ACM,
2011.

[3] D. M. Blei. Probabilistic topic models. Communications of

the ACM, 55(4):77–84, 2012.
[4] J. Cohen. Applied multiple regression/correlation analysis

for the behavioral sciences. Lawrence Erlbaum, 2003.
[5] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian.

Selecting empirical methods for software engineering
research. In Guide to advanced empirical software

engineering, pages 285–311. Springer, 2008.
[6] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The

confounding effect of class size on the validity of
object-oriented metrics. Software Engineering, IEEE

Transactions on, 27(7):630–650, 2001.
[7] S. Hanenberg. An experiment about static and dynamic type

systems: Doubts about the positive impact of static type
systems on development time. In Proceedings of the ACM

International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’10, pages
22–35, New York, NY, USA, 2010. ACM.

[8] R. Harrison, L. Smaraweera, M. Dobie, and P. Lewis.
Comparing programming paradigms: an evaluation of
functional and object-oriented programs. Software

Engineering Journal, 11(4):247–254, 1996.
[9] D. E. Harter, M. S. Krishnan, and S. A. Slaughter. Effects of

process maturity on quality, cycle time, and effort in software
product development. Management Science, 46(4):451–466,
2000.

[10] R. Hindley. The principal type-scheme of an object in
combinatory logic. Transactions of the american

mathematical society, pages 29–60, 1969.
[11] M. Jump and K. S. McKinley. Cork: dynamic memory leak

detection for garbage-collected languages. In ACM

SIGPLAN Notices, volume 42, pages 31–38. ACM, 2007.
[12] S. Kleinschmager, S. Hanenberg, R. Robbes, É. Tanter, and

A. Stefik. Do static type systems improve the maintainability
of software systems? an empirical study. In Program

Comprehension (ICPC), 2012 IEEE 20th International

Conference on, pages 153–162. IEEE, 2012.
[13] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have

things changed now? An empirical study of bug
characteristics in modern open source software. In ASID ’06:

Proceedings of the 1st workshop on Architectural and system

support for improving software dependability, October 2006.
[14] J. P. Marques De Sá. Applied statistics using spss, statistica

and matlab. 2003.
[15] C. Mayer, S. Hanenberg, R. Robbes, É. Tanter, and A. Stefik.

An empirical study of the influence of static type systems on
the usability of undocumented software. In ACM SIGPLAN

Notices, volume 47, pages 683–702. ACM, 2012.
[16] L. A. Meyerovich and A. S. Rabkin. Empirical analysis of

programming language adoption. In Proceedings of the 2013

ACM SIGPLAN international conference on Object oriented

programming systems languages & applications, pages
1–18. ACM, 2013.

[17] R. Milner. A theory of type polymorphism in programming.
Journal of computer and system sciences, 17(3):348–375,
1978.

[18] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings

of the International Conference on Software Maintenance,
page 120. IEEE Computer Society, 2000.

[19] M. Odersky, L. Spoon, and B. Venners. Programming in

scala. Artima Inc, 2008.
[20] V. Pankratius, F. Schmidt, and G. Garretón. Combining

functional and imperative programming for multicore
software: an empirical study evaluating scala and java. In
Proceedings of the 2012 International Conference on

Software Engineering, pages 123–133. IEEE Press, 2012.
[21] T. Petricek and J. Skeet. Real World Functional

Programming: With Examples in F# and C#. Manning
Publications Co., 2009.

[22] B. C. Pierce. Types and programming languages. MIT press,
2002.

[23] A. A. Porter and L. G. Votta. An experiment to assess
different defect detection methods for software requirements
inspections. In Proceedings of the 16th International

Conference on Software Engineering, ICSE ’94, pages

103–112, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[24] D. Posnett, C. Bird, and P. Dévanbu. An empirical study on
the influence of pattern roles on change-proneness.
Empirical Software Engineering, 16(3):396–423, 2011.

[25] F. Rahman and P. Devanbu. How, and why, process metrics

are better. In Proceedings of the 2013 International

Conference on Software Engineering, pages 432–441. IEEE
Press, 2013.

[26] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug
characteristics in open source software. Empirical Software

Engineering, 2013.

	Introduction
	Methodology
	Data Collection
	Categorizing Languages
	Identifying Project Domain
	Categorizing Bugs
	Statistical Methods

	Results
	Related Work
	Threats to Validity
	Conclusion
	Acknowledgements
	References

