Sixth Annual Conference on Privacy, Security and Trust

A Protocol for Building Secure and Reliable Covert Channel

Baishakhi Ray
University Of Colorado, Boulder
Department Of Computer Science
ECOT 717, Boulder, CO 80309, USA
baishakhi.ray @cs.colorado.edu

Abstract

This paper presents a secure and lightweight protocol for
reliable data transfer through moderate bandwidth covert
channels. Though data transfer through covert channels
is not unprecedented, existing covert channels have been
restricted to covert transmission of only small amounts of
data. This paper demonstrates that it is possible to transmit
large amounts of data covertly with sophisticated support
such as security and reliability. The proposed protocol ex-
ploits ICMP Echo Request as covert medium, and uses OS
finger-printing techniques to simulate real TCP/IP stack be-
havior for further security enhancements.

1 Introduction

A covert channel is a logical link between two com-
promised systems through which two end applications can
secretly exchange information without being detected. A
covert channel remains undetectable to an intermediary, de-
spite the fact that the intermediary may have privileges such
as an ability to intercept and observe all communication
traffic along this channel. A covert channel is designed to
be hidden within the normal communication traffic of a le-
gitimate logical channel, such as TCP or UDP. Secret in-
formation is embedded in the legitimate channel packets in
such a way that only the end applications can detect and re-
trieve this information. Anyone else watching the network
traffic is unable to detect the presence of such information
in the legitimate channel packets. Because a covert chan-
nel hides within a legitimate logical channel, it is a very
simple yet effective mechanism for exchanging information
between two end applications without alerting any firewalls
or intrusion detectors on the network.

While a large number of covert channels have been de-
signed and implemented over the last fifty years, they have
largely been restricted to covertly exchanging only small
amounts data and that too only via infrequent message ex-

246

Shivakant Mishra
University Of Colorado, Boulder
Department Of Computer Science
ECOT 717, Boulder, CO 80309, USA
mishras @cs.colorado.edu

changes. The key reason for these restrictions is that it
is very difficult to hide large amount of data in legitimate
logical channels without raising suspicion in the intermedi-
ate observers such as intrusion detectors. Furthermore, ex-
changing frequently even small amounts of data raises the
possibility of suspicion. Because of these restrictions, it has
not been possible so far to maintain extended sessions of
intelligent information exchange between two cooperating
end-applications via a covert channel.

In this paper, we describe the design, implementation
and evaluation of a protocol to establish a covert channel
that not only maintains a high degree of stealthiness, but
also allows end applications to maintain prolonged commu-
nication sessions and provides support for reliability as well
as data confidentiality. An important feature of our pro-
posed protocol is that it can be embedded in any legitimate
logical channel that is based on IP. In this paper, we de-
scribe our protocol using ICMP. This protocol satisfies the
following important properties:

e Stealthiness: An intermediary cannot detect the pres-
ence of the covert channel despite observing all com-
munication traffic. This property is achieved by en-
suring that the statistical property of the channel with
covert data embedded is same as the statistical prop-
erty of the underlying legitimate channel without any
covert data. Stealthiness is important because if an in-
termediary can detect the existence of a covert channel,
he/she can simply destroy that channel as well as the
entire covert communication. In particular, statistical
similarity between a covert channel and a legitimate
channel prevents a network intrusion detector from de-
tecting the existence of a covert channel.

¢ Lightweight: Difference between the resources (CPU,
memory and bandwidth) required to operate the pro-
posed covert channel and those required to operate the
legitimate channel is minimal. This property is impor-
tant to ensure that a host-based intrusion detector or
other users who are using the end hosts do not become

978-0-7695-3390-2/08 $25.00 © 2008 IEEE

|IEEE
@) computer
DOI 10.1109/PST.2008.26 Soclef

ty

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

suspicious of a covert activity by observing deviations
in the resources being consumed.

o Confidentiality and integrity: Only the end appli-
cations can decipher the secret information being ex-
changed through the covert channel. Furthermore, end
applications can detect any tampering with the secret
information being exchanged.

o Reliability and Ordering: End applications are able
to exchange secret information via the proposed covert
channel, despite intermediate data loss. Furthermore,
the protocol ensures with high probability that the se-
cret information is received in the same order in which
it was sent, even though the underlying legitimate
channel may reorder different packets.

We have implemented a prototype of this protocol using
ICMP in Linux kernel, and performed a number of experi-
ments. Results from these experiments show that there is no
statistical difference in the communication data pattern re-
sulting from our protocol embedded in ICMP and standard
ICMP. Furthermore, the results show our protocol does not
result in any significant changes in resources consumed. To
demonstrate that our protocol can be used for intelligent in-
formation exchange, we have implemented an application
wherein an end-application can open a shell on a remote
machine using our covert channel.

The rest of this paper is organized as follows. Section
2 summarizes the current and past work done in building
covert channels and identifies the differences between past
work and the protocol proposed in this paper. Section 3
describes the design of our protocol. Section 4 describes a
prototype implementation of our protocol over ICMP within
the Linux operating systems and provides an evaluation of
our protocol along with some performance measured from
our prototype implementation. This section also discusses
the application we have built using our covert channel. Fi-
nally, Section 5 concludes the paper.

2 Related Work

Several methods have been proposed to build covert
channels between two compromised hosts, exploiting re-
dundancy in TCP/IP protocol. [7] shows how to use IP
identification field and TCP initial sequence number field,
by simply replacing them with clandestine ASCII charac-
ters. The method can further be improved by XOR-ing
the data with some random numbers. Thus one can send
up to 16 bits exploiting IP identification field, while up to
32 bits of covert data can be sent through TCP sequence
number. Another possible data hiding approach is encod-
ing the clandestine data in TCP acknowledgment sequence
number field. This method relies on IP address spoofing.

247

Both the sender and destination addresses are forged, the
covert data is sent to a remote site (destination address),
and the remote site then bounces back the packet to the in-
tended target, i.e. the source address of the packet. An-
other simple but elegant deployment of covert channel is
Loki [3]. It uses data part of ICMP Echo request and echo-
reply packet for covert communications. This method in-
creases the bandwidth considerably at the expense of rela-
tively higher chances of getting detected.

[2] investigates the possibility of data hiding by packet
header manipulation and packet sorting. In the first ap-
proach, [2] exploits the redundancy in DF Flag (Don’t
Fragment) flag in IP header, while MF flag is 0. But this
method is less efficient, since in each packet, only one bit
covert data can be sent, hence only results in nominal band-
width utilization. A better approach can be hiding data
in the 32 bit sequence number field of the authentication
header (AH) and encapsulating security payload (ESP) in
the IPSec protocol. This provides information on natural
ordering of the packet stream, and is therefore utilized for
data hiding.

Another potential field for data hiding is TCP timestamp,
studied in detail in [5]. Low order bits of TCP time stamp
depend on host machine, and are effectively random from
outside detection point of view. Hence, data can be stored in
these low order bits, without changing the statistical prop-
erty of the timestamp, effectively. [4] IPv6 Destination op-
tion field can be another area of interest. If the option type in
TLYV field of IPv6 extension header is set to 00, the options
are supposed to be skipped. Hence, a destination options ex-
tension header with TLV encode the message, the highest-
order 2 bits of the option type to 00 and an option type with
value not taken yet, can be a source of covert channel.

Though covert channels have been implemented over
many different logical channels, they all share one similar-
ity. They do not provide enough bandwidth for any real data
transfer. Some implementations support data hiding of up to
four bytes or more. However, they violate statistical prop-
erty of the systems, and hence are easily detectable. For
example, in TCP sequence number, one can embed the data
of up to four bytes, but sequence numbers are supposed to
be monotonoically increasing after a connection has been
established. An alternative is to send TCP SYN everytime
with new sequence number, but that creates too many TCP-
SYN packets between two hosts, causing suspicion. A sys-
tem administrator can prevent the two hosts to communicate
based on such suspicion. Hence covert communication over
a longer period of time is not be possible with TCP SYN
packets.

We propose a protocol to build covert channel over any
IP-based channels. In this paper, we focus on building a
covert channel over ICMP Echo-Request packet using this
protocol. There are two reasons for choosing ICMP echo

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

request packets. First, ICMP echo request packets are com-
monly used to check the status of a network. In fact, a
majority of the users use ICMP to ping other machines to
know whether it is up or not, or to check the status of a link.
As such, firewalls and networks consider ping traffic to be
benign and allow it to pass through [3]. Secondly, an in-
termediary cannot disable ICMP traffic without interrupting
normal user services, because ICMP is widely used to com-
municate abnormal conditions during IP routing, and check
network status.

Though [3] has already proposed method to send covert
data over ICMP echo request and reply packets, they can-
not keep the statistical property of the underlying ICMP
channel. Our protocol is unique to the extent that instead
of exploiting all the 56 bytes that are available as default
for ICMP Echo request data [1], we use only five bytes
for data. Ping implementation of Linux uses timestamp in
first 8 bytes of data field as OS fingerprint. We embed the
covert data in the last five bytes of the OS fingerprint to
maintain the same statistical property as the normal ICMP
data. In addition, to provide a reliable communication, we
have designed an 8-bit protocol header that is embedded
inside the ICMP identification field. Hence effectively we
send 6 bytes of covert data per packets.

3 Protocol Design

We propose a protocol for constructing a secure and re-
liable covert channel. An important feature of this protocol
is that it can be embedded in any IP-based channel. The
protocol provides support for secure (confidentiality and in-
tegrity) and reliable bi-directional data exchange. The key
challenge in building such a protocol is to ensure that it is
computationally lightweight and consumes low bandwidth
of internet.

3.1 Reliability

To establish reliability, we choose the simple stop-and-
wait automatic repeat request (ARQ) mechanism. There are
of course more sophisticated and popular reliability mech-
anisms available, e.g. go-back-n or selective repeat re-
quest. But the major problem with implementing them is
that they tend to use much larger bandwidth than we can
afford to avoid detectability. Since low bandwidth usage is
of paramount importance for our design, these sophisticated
mechanisms with large bandwidth requirements do not suit
well.

For example, all modern operating systems support rate
limiting of ICMP echo request/reply traffic. If the “limiting
rate” is lower than the transmit window size of go-back-n
or selective repeat request ARQ then the window size of
the protocol will effectively converge to the “limiting rate”.

This will result in a lot of unnecessary retransmissions rais-
ing suspicions at the intermediary. In addition to low band-
width, stop-and-wait mechanism has the advantage that the
size of the sequence number and acknowledgment sequence
number can be restricted to just one or two bits. This mini-
mizes protocol overhead in low-bandwidth covert channels.
Though stop-and-wait is not very efficient is terms of band-
width usage, we intentionally want to keep the bandwidth
low to avoid detection.

0 2 3 4 6 7

SeqNo |isData| Ack | Expected | Start | Stop

Seq No Flag | Flag

Figure 1. Protocol Header

Our protocol header is shown in Figure 1. The sequence
number is two bits long and is used for identification pur-
poses. Two bits of sequence number field allows for four
sequence numbers. We believe that four sequence numbers
are sufficient for protecting against sequence number wrap-
ping around and being reused before an earlier packet with
the same sequence number has been processed. The IsData
field is a one-bit flag to indicate if the packet contains covert
data in the data part of the Packet. The acknowledgment is
comprised of three bits: the first bit Ack indicates acknowl-
edgment (set to 1); the next two bits are the sequence num-
ber of the frame being acknowledged. Hence an acknowl-
edgment value of 100 means frame 0 has been received and
the sequence number of the next expected frame is 1. Simi-
larly, a value of 101 in this field means frame 1 has been re-
ceived and the sequence number of the next expected frame
is 2. Finally, the Start flag bit is set to indicate start of the
covert communication, and the Stop flag bit is set to indicate
termination of the covert communication.

In accordance with ARQ mechanism, a sender expects
an acknowledgment for a frame sent within a fixed timeout
period. In case it does not receive this acknowledgment,
it retransmits it. The data exchange can be bi-directional,
in which case acknowledgment can be piggybacked with
data, indicated by setting the isData flag to 1. The basic
mechanism is explained in the following diagrams:

3.2 Security

Our goal is to provide two types of security support in
our protocol: data confidentiality and data integrity. While
techniques to provide this support are well known, the key
challenge is to provide this support with minimal resources.
For example, data confidentiality can be provided by using
an iterated cryptosystem such as 3-DES or AES. However,

248

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

Create ICMP
Echo Request

(seq. no: = 0/1/2/3
isData:= 1)

(Added Security|
Feature

A

Transmit Echo |

v

Request Packet| ~

Received

Falsg

Ack seq. no. False

== sent seq. no?

Echo Reply
within tiimeout?

Get next packet]

(seq. no++)
mod

Figure 2. State Machine for Sender

Receive ICMP
Echo Request

Pseq. no: = 0/1/2/3|e—
isData:= 1)

v

Good Packet?

False

False

True

rcvd seq. no.
== expected
seq. no?

Pass packet to
uper layer

v

False (expected

seq. no++)mod 4

Send ICMP Echo
Request with ACK flag

set to next expected |€
seq number

Figure 3. State Machine for Receiver

249

iterated cryptosystems are hugely complex and computa-
tionally intensive so the chances of being exposed increases
significantly. As we discussed earlier, in most of the cases a
compromised host acts as one end point of the covert chan-
nel. It is very important for the covert channel daemon to
use minimum resources, as more resource usage will raise
suspicion. Hence iterated cryptosystems do not satisfy our
requirements. Instead, we have chosen a secure, lightweight
encryption-decryption algorithm based on chaotic dynam-
ics.

This algorithm uses one-time pad (OTP) as the basic en-
cryption mechanism. In this algorithm, plain text M is com-
bined (XOR-ed) with an equal length string of random bits
K called key or pad. This key is usually generated by a
cryptographically strong pseudo-random number generator
(CSPRNG). As this key (pad) is used only once and never
used anywhere else by any mechanism, this is called one
time pad. Encryption mechanism is defined as

C=EMK)=MaoK (1)
Decryption mechanism is similarly defined as
M=D(C,K)=CaK 2)

One-time pad is the only cryptosystem that can is
claimed to be fully secure. But the basic requirement is that
no portion of the key would be reused for another encryp-
tion. This requires random key distribution at both ends
of the covert channel, which is non-trivial. If the key is
transmitted by another covert channel and the intermediary
can somehow decipher it, the whole method will be in vein.
Hence, using OTP in its basic form is not possible in most
of the general-purpose applications, including our protocol.

We use chaotic dynamics based pseudo random num-
ber generator (PRNG) as the source of our key material to
eliminate this drawback. We need secure distribution of the
random string K, and K must get initialized to a new ran-
dom value for each encryption. The first requirement can
be achieved if we can keep the amount of information to
be exchanged to a minimum and that is exchanged once
per encryption. For solving the second problem, we need
a cryptographically strong pseudo random number genera-
tor (CSPRING) that produces sequences of values that have
the following properties:

1. The values have minimal internal correlation.

2. The values convey minimum possible information
about their origin.

3. The values are absolutely dependent upon unique and
sensitive initial condition for reproduction.

Hence, we propose a new cryptographically strong
pseudo-random number generator based on a well-known

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

chaotic map called the logistic map [6]. The logistic map
is defined as follows

Tp = TTp-1(1 — 2—1), where 0 < z; < 1 and
0<r<4
When 357 < r < 4, the iteration values

(zo,21,, Tn,...) are random. Now let the pseudo random
number generator function be defined as (here Ry, is the k"
bit generated by PRNG)

Ry — { 0, ifxp, >0.5

1, ifx,, <05

The values of xg, r and n need to be secretly pre-shared
between the sender and the receiver. As this logistic map
has even distribution between (0,1) on both sides of 0.5, it
serves as a good random number generator.

Based on this, the random number generator function is
defined as Ry (zo,r,n) that takes o , r and n as input and
outputs a bit 0 or 1 for each iteration k. The sender breaks
the message in chunks of P;, Ps, ..., of size ¢ each and
computes the cipher text blocks C'y, C, The pads (secret
keys) are defined as B;, By, ... from which each cipher text
block is computed.

By =R;.R; Ci=P B

BQ :RH_l..RQi@Cl CQ :PZ@BZ

Bn = R(n—l)i+1--R2ni ® Cn—l On = Pn S% Bn

Since the receiver has knowledge about ¢, r and n, it can
easily generate B; = R;...R;. Onreceiving C the receiver
generates the original plain text by simply XOR-ing it with
Bs.

P =C® B

The receiver generates the next random key (pad) by
By = Riy1..Ro @ Cy
The received cipher text C'5 is then deciphered as
P =Cy® By

Similarly,
Pn = Cn @ Bn

This method provides data confidentiality with minimal
computational requirements. In addition, a checksum pro-
vides support for data integrity. This feature is optional,
because the legitimate channel within which covert data is
being transmitted may itself provide some support for data
integrity. For example, ICMP provides a checksum field
that can be used to detect data tampering.

250

3.3 Covert Channel over ICMP

Based on these reliability and security mechanisms, we
now present a design to transmit covert data via ICMP Echo
request packets. One Approach is to put the protocol header
and covert data together, and send it across after proper
encryption. But this is only feasible when the underlying
covert channel has enough bandwidth. For Example, if we
use ICMP echo request data as our covert channel medium,
we can do this. We assume here that the maximum size
of the data part is 56 bytes (normally ICMP data part sent
by Ping command has 56 bytes of data). With 56 bytes of
payload, it is easy to squeeze the data, the protocol header
and cryptographic checksum (optional) together in ICMP
payload. But if the covert channel media is something like
TCP timestamps where the available bandwidth is 1 bit per
packet, this method is impractical.

In addition, generating echo request packets using this
method will cause changing the data part with every packet.
In general, every operating system puts it finger print in the
data part. Hence, ICMP echo request payload carries a fixed
bit pattern. If the data part of ICMP echo request keeps on
changing with every packet the covert channel will be easily
detectable.

In our design we implement two covert channels in the
same packet. One is used for transmitting the protocol
header and the other one is used for transmitting data. For
example, in an ICMP echo packet, the last byte of ICMP
identifier field can be exploited to carry the protocol header
and data can be put in ICMP payload. Necessary care must
be taken so that the data transmitted through covert channels
have the characteristics of the operating system fingerprint.
One of the main advantages of this approach is that it can
use two different low-bandwidth covert channels together
to transmit data reliably across, while neither of these chan-
nels alone has enough bandwidth to transmit both the data
and the protocol header.

Now, we will look into how the protocol header can be
hidden in the ICMP identifier field to make detection diffi-
cult. When we say that it is difficult for an intermediary to
detect the covert transfer of data, we mean that by simply
inspecting all packets it will not be possible for the inter-
mediary to decide with certainty that a particular packet is
carrying some covert data and not normal traffic generated
by the end hosts.

As most of the ICMP echo request packets are generated
by ping program, we look into how the ping program sets
the ICMP identifier field. The current implementation of
ping in Linux fills the ICMP identifier field with lower 16
bits of the Process ID of the “ping” process. So each time
the ping program is run, it uses a different value in the ICMP
identifier field. But all packets sent by the same instance of
”ping” contain the same value in the ICMP identifier field.

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

In Linux, process IDs are initialized to 300 and incremented
by 1 every time a new process is created. When the ID
overflows, it is initialized back to 300. All IDs below 300
are reserved for the kernel threads. So, the ICMP identifier
field can safely contain random values as the monotonicity
of the process IDs won’t always be reflected in the lower
16 bits, i.e. it can increase and decrease depending on the
particular Process ID in use at that time.

Though monotonicity in the identifier is not absolutely
necessary, the last two bytes of process ID wrap around after
2(16) processes. Hence to minimize the anomaly caused
by insertion of data, we chose to increase the 1st byte of
the ICMP identifier field monotonically, while inserting the
protocol header in the last byte of the identifier field.

In Linux if time measuring option is enabled (which is
enabled by default) the ”ping” program fills the first eight
bytes of the payload with current time. First four bytes con-
tain the ”seconds” portion in the network byte order and the
next four bytes contain the microsecond portion in the net-
work byte order. The rest of the data is filled with values
from 8 to 64. So, in the payload, only the first 8 bytes are
variable, rest always remains the same.

Hence, we suggest using the lower 4 bytes (where the
microsecond portion is stored) and the lowest byte of sec-
ond portion together to hide our data. As this causes mini-
mal statistical changes in the timestamp, it’ll be very diffi-
cult to differentiate from the clock skew.

4 Evaluation

We have implemented a prototype of a covert channel
using our protocol in Linux ICMP. In this implementation,
we embedded our 1-byte protocol header in the lower (sec-
ond) byte of the ID field in the ICMP protocol header. As
discussed earlier, ID field in Linux ICMP header includes
the lower two bytes of the process id of the process sending
the ICMP packet. Since process ids in Linux can take any
value staring from 300 until the largest value that can be ac-
commodated (4 bytes or 8 bytes), all values in the range O ...
(216 — 1) can appear in the lower two bytes of legal process
ids. Thus, incorporating our one-byte protocol header in
the lower byte of the ID field of an ICMP header and mono-
tonically increasing the upper byte of the identifier field,
does not make the corresponding ICMP packet unusual, and
hence does not raise any suspicion of unusual activity.

An added benefit of updating the ID field in this man-
ner is that every packet that the end application transmits
has a different value in the ID field. This prevents an in-
termediary from inferring that a series of Ping packets are
in fact originating from the same process and thus causing
suspicion.

Up to five bytes of data are included from fourth through
eighth bytes of ICMP payload. As discussed earlier, the

251

first eight bytes in Linux ICMP payload contain the value of
current time (seconds and microseconds). By incorporating
our covert data, we update the value of the microseconds
field (fifth through eighth bytes) and the one byte of the
seconds field (fourth byte). It is essential to ensure that this
update does not make the corresponding ICMP packet stand
out as unusual.

We have run a number of experiments using our pro-
totype implementation to see if incorporating our protocol
headers and data in the above-mentioned way causes any
statistical difference in the bit patterns of the correspond-
ing ICMP packet from that of a normal ICMP packet. Our
experimental set up consists of two Pentium PCs running
Linux connected to each other via a 10 Mbps Ethernet hub.
In each run, we send random data bytes that are embed-
ded in 5 bytes of ICMP payload. Each data set contains 60
modified timestamp values. It is then compared with the
corresponding unmodified timestamps.

Our results show that there is no statistical difference be-
tween the bit patterns generated by our covert channel laden
ICMP packets and normal ICMP packets. Figure 4 shows
the value of the timestamp field in ICMP packet under nor-
mal conditions, i.e. when no covert data has been embed-
ded, over 70 different runs. Figure 5 shows the value of
the time stamp field in ICMP packet when our protocol has
been deployed, again over 70 different runs. Notice that
both of these graphs show similar statistical behavior.

Our protocol is extremely light weight in the sense that
its resource consumption is similar to that of the underly-
ing communication channel. To demonstrate this, we have
measured memory consumption and CPU utilization of our
protocol as well as that of Linux Ping program (See Table
1). Here, values of 00.00.00 for CPU utilization indicates
that both programs require extremely low CPU time. It is
clear that there is no significant difference in memory con-
sumption or CPU utilization between the two programs.

4.1 Telnet Application

To measure the performance of the proposed covert
channel, we have implemented a telnet like application over
the covert medium. We have captured a shell of the remote
machine and execute some well known commands over the
covert channel. The final goal is to measure the perfor-
mance of our application over normal Telnet.

Our application over covert channel has satisfactorily
performed execution of the commands without any signif-
icant delay. In the current application, we have not fol-
lowed the Telnet specification thoroughly, hence comparing
its performance with telnet will not provide a proper estima-
tion. This is a plan for our future work. Though we could
not take a performance measurement during the time of sub-
mission of this paper, it gives a fair idea about the potential

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

Table 1. Resour

ce utilization

Resource Ping Covert Channel
Resident
Memory 592 kb 584 kb
Shared
Memory 500 kb 476 kb
Time 00.00.00 00.00.00
system timestamp timestamp with embedded covert data
1.84467e+19 1.84467e+19 T T T T T
"result_org.txt" + "result.txt" +
++ +
1.84467e+19 I E 1.84467e+19 T E
HH ek
HHH A
1.84467e+19 E 1.84467e+19 E
Riaia el
+H+ e
T 1.84467e+19 - + . T 1.84467e+19 - i b
3 3
3 i 2 b
o [e]
S S
£ R € e
c 1.84467e+19 - E c 1.84467e+19 | E
o R o e
£ £
] [v]
'g -+ *g b
E 1.84467e+19 . E E 1.84467e+19 - E
- +++
Eaaanaas e
1.84467e+19 E 1.84467e+19 s
+ +
+ -+
1.84467e+19 £ E 1.84467e+19 E
1.84467e+19 . : : : : : 1.84467e+19
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60

Expereminet No

Figure 4. system Timestamp value

of the proposed covert channel protocol for intelligent data
transfer.

5 Discussion

Building trustworthy systems is a huge challenge not
only because of the complexities in dealing with individ-
ual component failures and determined adversaries launch-
ing serious attacks, but also because of the possibilities of
covert communication that are extremely hard to detect. In

252

Expereminet No

Figure 5. Modified timestamps with embed-
ded covert data

fact, there are so many different and subtle ways in which
covert channels can be built that it is practically infeasible
to design a system that can reliably detect the presence of
covert channels. The only redeeming fact in this respect so
far has been that covert communication via covert channels
is limited to very low bandwidth, e.g. from one bit to 1 byte
per packet. Furthermore, it was not possible to transmit a
large number of packets via covert channel with in a short

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

70

period of time.

This paper describes the design and implementation of
a protocol that not only supports construction of moderate
bandwidth covert channels, i.e. five bytes of covert data per
packet, but also provides support for reliability and security
in covert communication. Our experimental analysis shows
that it is not possible to detect this covert channel based on
an statistical analysis of the transmitted packets.

Future work includes a detailed analysis of the protocol
over both a short-range, local communication network and
long-range communication network. In addition, we plan to
measure the computation and memory resources consumed
by this protocol. Finally, we plan to explore approaches to
detect covert channels, and mitigate the effects of a covert
channel in highly dependable systems.

References

[1] Man Ping: Linux manual page of PING.

[2] K. Ahsan and D. Kundur. Practical data hiding in tcp/ip, 2002.

[3] daemon9 AKA route. Project loki. Phrack Magazine, 7(49),
August 1996.

[4] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Internet Engineering Task Force: RFC 2460,
December 1998.

[5] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert
messaging through tcp timestamps.

[6] L.Kocarev and G. Jakimoski. Logistic map as a block encryp-
tion algorithm. Physics Letters A, 289:199-206, Oct. 2001.

[7] C. H. Rowland. Covert channels in the tcp/ip protocol suite.
First Monday, 2(5), May 1997.

253

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 9, 2009 at 13:59 from IEEE Xplore. Restrictions apply.

