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ABSTRACT
Software forking—creating a variant product by copying and
modifying an existing product—is often considered an ad
hoc, low cost alternative to principled product line develop-
ment. To maintain such forked products, developers often
need to port an existing feature or bug-fix from one product
variant to another. As a first step towards assessing whether
forking is a sustainable practice, we conduct an in-depth case
study of 18 years of the BSD product family history. Our
study finds that maintaining forked projects involves signif-
icant effort of porting patches from other projects. Cross-
system porting happens periodically and the porting rate
does not necessarily decrease over time. A significant por-
tion of active developers participate in porting changes from
peer projects. Surprisingly, ported changes are less defect-
prone than non-ported changes. Our work is the first to
comprehensively characterize the temporal, spatial, and de-
veloper dimensions of cross-system porting in the BSD fam-
ily, and our tool Repertoire is the first automated tool for
detecting ported edits with high accuracy of 94% precision
and 84% recall. Our study finds that the upkeep work of
porting changes from peer projects is significant and cur-
rently, porting practice seems to heavily depend on devel-
opers doing their porting job on time. This result calls for
new techniques to automate cross-system porting to reduce
the maintenance cost of forked projects.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement
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1. INTRODUCTION
It has become increasingly common to create a variant

software product or to introduce a new feature by copy-
ing code fragments from similar software products. For ex-
ample, FreeBSD, OpenBSD, and NetBSD evolved from the
same codebase, OpenSSH originated from SSH, LibreOffice
originated from OpenOffice.org, etc. As copying code frag-
ments across products is common, there are names referring
to this process: forking—copying an existing product to cre-
ate a slightly different product and porting—copying an ex-
isting feature implementation or bug fix to another member
of the same product family. Software forking is often con-
sidered an ad hoc, low-cost alternative to principled product
line development [26].

Though forking provides flexibility in taking an existing
project to new directions or providing software under differ-
ent license restrictions [8], forking has negative implications
during software maintenance. It duplicates development ef-
fort and requires developers to port similar bug fixes and
feature implications across forked projects [26].

To investigate the extent and characteristics of repeated
work in maintaining forked projects, we focus on cross-system
porting changes. We compute the amount of edits that
are ported from other projects as opposed to the amount
of code duplication across projects, because not all code
clones across different projects undergo similar changes dur-
ing evolution, and similar changes are not confined to code
clones. For this analysis, we develop a tool called Reper-
toire that compares the content and edit operations of pro-
gram patches to identify ported edits. Repertoire takes
diff-based program patches at the release granularity as in-
put. It then uses CCFinderX [15] to identify similar edit
content in the patches and determines similar edit operation
sequences using N-gram matching [1]. To evaluate the ac-
curacy of Repertoire, we manually construct the ground
truth of ported edits on a sampled data set. We inspect
code changes whose commit messages indicate cross-system
porting activities and individual ported edits reported by
Repertoire. The comparison between the Repertoire’s
results against this ground truth finds that it has precision
of 94% and recall of 84%.

Using Repertoire, we conduct an in-depth case study of
three parallel 18 years of version history of the BSD product
family—one of the most well known, long-surviving prod-
uct family created through software forking. NetBSD and
FreeBSD were forked from BSD Lite in 1993 and OpenBSD
was forked from NetBSD in 1995. Though they are main-
tained independently, recent studies indicate that they share



a large amount of common code fragments [9,11,29] and that
similar bug fixes are common despite the lack of overlap be-
tween contributors [5]. Using the version history of three
BSD projects, we investigate the extent of ported changes
from other projects, the number of developers who are in-
volved in porting patches, the time taken to port patches,
and the locations where ported changes are made to, etc.

Our study questions and findings are summarized as fol-
lows:

• What is the extent of edits ported from other
projects? On average, the amount of edited lines
ported from the patches of other projects consists of
13.77%, 15.52%, and 10.74% of total number of lines
in the release level patches of FreeBSD, NetBSD, and
OpenBSD respectively. Porting patches from other
projects happens periodically in the BSD family. The
porting rate does not necessarily decrease over time
across all three projects.
• Are ported changes more defect-prone than non-

ported changes? Changes ported from other projects
are less defect-prone than non-ported changes in all
three projects. This implies that developers are likely
to selectively port well-tested features from other projects.
• How many developers are involved in porting

patches from other projects? In each release,
a significant portion of developers port changes from
peer projects: on average 26.12%, 58.85%, and 44.85%
of active developers in FreeBSD, NetBSD, and Open-
BSD respectively. The entropy measure of developers
is lower for ported changes than non-ported changes,
implying that the workload distribution of porting work
is skewed: some do a lot more porting than others.
• How long does it take for a patch to propagate

to different projects?
More than 50% of ported edits propagate from one
system to another within 10, 13, and 20 months in
FreeBSD, NetBSD, and OpenBSD, corresponding to
about 2.11, 1.09, and 2.95 releases on average respec-
tively. However, some changes take a very long time
to propagate. For 90% of all ported edits to propagate
to peer projects, it takes 66, 66, and 81 months.
• Where is the porting effort focused on? Ported

changes are localized within less than 20% of the modi-
fied files per release on average in all three BSD projects.
This indicates that porting is concentrated on a few
sub systems.

Though the individual BSD development communities have
managed to cope with the consequence of forking, the amount
of work require‘d to port changes from other projects is
not insignificant. A considerable amount of time and devel-
oper effort is spent on repeated work across forked projects.
Currently, the upkeep work of porting changes from other
project seems to heavily depend on contributors doing their
job on time. These results call for new tool support for
notifying relevant developers of potential collateral evolu-
tion [25] and propagating a feature implementation or bug
fix to relevant contexts in different projects automatically.
For example, Sydit [20] and Anderson’s approach [3] aim
to realize a new means to automatically replicate similar
changes and could relieve the burden of cross-system port-
ing of forked projects. A shared change tracking system

might also be useful, which will keep track of cross-system
porting across forked projects.

Our paper makes the following contributions:

• Repertoire is an automated cross-system porting anal-
ysis tool, which finds ported edits with 94% precision
and 84% recall. This tool can serve as a basis for as-
sessing the extent and characteristics of cross-system
porting among forked projects.
• Our work is the first comprehensive analysis of cross-

system porting in the BSD product family along the
temporal, spatial, and developer dimensions.
• Our study finds that, while ported edits are less defect-

prone than non-ported edits, the upkeep work of cross-
system porting is significant and involves a large num-
ber of active developers.

As the decision of forking has long-term consequences, we
plan to further investigate the relationship between port-
ing effort and other software metrics such as dependencies,
coupling, people and organization metrics, etc. Since fork-
ing decisions are often made due to license disagreement or
incompatibility, we aim to investigate the implication of li-
cense terms on porting effort or the information flow among
forked projects by combining our automated porting analy-
sis with German et al.’s license analysis [11,12].

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 discusses our study method
using an motivating example from the BSD product. Sec-
tion 4 presents study results. Section 5 discusses threats to
validity. Section 6 summarizes the implications of our study
results with the directions for future work.

2. RELATED WORK
Studies on Code Duplication. Although most consider
code clones to be identical or similar code fragments [15],
code clones have no consistent or precise definition in the
literature. Indeed, a “clone” has been defined operationally
based on the computation of individual clone detectors. Some
are based on lexical and syntactic analysis, while others
depend on isomorphic program dependence graph analysis,
code metrics, etc. A more comprehensive literature on code
clones is described elsewhere [28].

By applying clone detection techniques to programs, sev-
eral studies investigate the extent of clones in software. Nearly
as much as 10% to 30% of the code in many large scale
projects is identified as clones (e.g., gcc-8.7%, JDK -29% [15],
Linux -22.7% etc). Gabel and Su investigate cloning among
a collection of 6000 software projects (over 420 million lines
of code) and find a general lack of source code uniqueness at
the level of approximately one to seven lines [10]. Al-Ekram
et al. show that even unrelated software systems have about
about 1% of common code, and this accidental cloning is
often due to sharing similar API usages, etc [2]. Krinke et
al. present an approach of detecting the provenance of code
among several projects using clone detection [17]. Livieri
et al. study the extent of duplicated code in Linux over
time [19].

However, these studies focus on the amount of code dupli-
cation in a software system as opposed to the extent of repet-
itive effort of cross-system porting among forked projects.
Not all code clones evolve in the same fashion, and similar
changes are not restricted to only cloned code. To measure



the extent of repeated work, Repertoire focuses on similar-
ity among program patches across forked software systems as
opposed to similarity among code fragments. This requires
Repertoire to check whether code fragments undergo simi-
lar additions, deletions, and modifications by considering an
extra dimension of edit operation similarity.
Case Studies on the BSD Product Family. Several
studies analyzed the evolution of BSD product family. For
example, Fischer et al. analyzed change commit messages
of the BSD family and found a decreasing trend of infor-
mation flow between OpenBSD and other BSD projects [9].
Their analysis does not automatically identify similar code
modifications made to different BSD projects. Yamamoto
et al. found up to 40% of lines of code are shared among
NetBSD, OpenBSD, and FreeBSD [29]. James et al. showed
the evidence of adopted code in device driver modules be-
tween Linux and FreeBSD [7]. German et al. also studied
cross project cloning in the BSD product family and ana-
lyzed copyright implications when code fragments transfer
between different systems under different licenses. On the
other hand, our study focuses on the characteristics of cross-
system ported changes. Canfora et al. investigated the social
characteristics of contributors who make cross-system bug
fixes between FreeBSD and OpenBSD [5]. They used textual
analysis of change commit logs and mailing list communica-
tion logs. Their findings are aligned with our finding that
contributors who port changes from other projects are highly
active contributors. Unlike Canfora et al., our study investi-
gates all three projects (OpenBSD, FreeBSD, and NetBSD),
and automatically detects ported changes by determining
similar edit content and edit operation sequences within
release-level patches as opposed to the textual analysis of
change commit messages only. Furthermore, our study ex-
tends Canfora et al. by measuring the time taken to port
changes, the percentage of files affected by porting, the work-
load distribution among the contributors who port patches
from other projects, and the correlation between defects and
ported changes vs. non-ported changes. Ozment et al. inves-
tigated security vulnerabilities in the OpenBSD project to
examine whether software security improves with age [24].
However, they did not investigate the extent and frequency
of ported changes from other BSD projects.
Clone Evolution Analysis. Lague et al. first analyzed the
evolution of clones over time in a large telecommunication
system and classified changes to code clones in four cate-
gories: new, modified, never modified, and deleted [18]. Kim
et al. developed clone genealogy analysis to study changes
to code clones [16]. Balint et al. developed a visualization
tool to show (1) who created and modified code clones, (2)
the time of the modifications, (3) the location of clones in
the system, and (4) the size of code clones [4]. These studies
detect code clones a priori in software systems and monitor
changes to only those clones over time. In contrast to clone
evolution analysis, our analysis compares the content and
edit sequences of program patches to detect ported changes
among forked BSD projects.
Recurring Software Modifications. Previous work on
recurring bug fixes [23] finds that a large number of simi-
lar bug fixes are made to code peers, which provide similar
functionality or use APIs in a similar manner. Their em-
pirical analysis focuses on recurring bug fixes and security
vulnerabilities in individual projects but does not investi-
gate cross-system bug fixes in a product family. Padioleau

et al. [25] investigate the extent of recurring software modifi-
cations among device drivers in Linux. Based on the insight
that making similar changes to not identical contexts is te-
dious and error-prone, several approaches infer a generalized
program transformation script from example program differ-
ences to automate similar edits [3, 20]. Our study provides
the motivation for applying such approaches to facilitate col-
lateral evolution of forked software projects.

3. STUDY METHOD
Sections 3.1 and 3.2 describe our study subjects and our

tool Repertoire that automatically identifies ported ed-
its within program patches. Section 3.3 describes how we
measure the accuracy of Repertoire through a manual in-
spection of change logs and program patches and how we
tune the input threshold for CCFinderX for our study.

3.1 Study Subjects
For our case study, we focus on the three BSD projects,

which share a common ancestor. While OpenBSD was di-
rectly forked from NetBSD, FreeBSD and NetBSD were
forked from a common origin BSD Lite. We use 54, 14,
and 30 releases from FreeBSD, NetBSD, and OpenBSD and
thus covering 18 years of parallel evolution history. Table 1
shows the size of each BSD, the releases studied, and the
number of developers in each project.

Since all three BSD projects under consideration use a
CVS repository, we use cvs diff to identify program patches
applied to individual projects, use cvs log to identify com-
mit message, and use cvs annotate to retrieve committer
information. To identify bug fixes for each project, we parse
each file’s change commit messages and identify versions
that contain keywords such as ‘patch,’ ‘fix,’ and ‘bug,’ using
a heuristic developed by Mockus and Votta [21].

Table 1: The BSD Product Family
KLOC releases authors years

FreeBSD 359 to 4479 54 405 18
(R1.0 - R8.2)

NetBSD 859 to 4463 14 331 18
(R1.0 - R5.1)

OpenBSD 297 to 2097 30 264 16
(R1.1 - R5.0)

3.2 Repertoire
To detect ported edits within individual program patches,

Repertoire determines similar edit content and operations
between each pair of patches. By program patches, we mean
diff-based line-level differences per file. We focus our at-
tention on .c files only, discarding header files, because we
are interested in changes to implementations rather interface
declarations. The diff-based patches are generated using a
cvs diff command at the release granularity. We also use
the -c option to include surrounding unchanged code and
use the -p option to organize program differences per func-
tion.

Repertoire identifies similar program modifications be-
tween patches in the following three steps. Consider the two
input patches Px and Py shown in Table 2.
1© Identify cloned regions between patches. First,
Repertoire pre-processes diff-based patches to convert them
into a CCFinderX compatible format. It removes symbols



Table 2: Repertoire compares both the content and
edit operations of patches.

Px Py

**** Old ****
X1 for(i=0;i<MAX;i++){
X2 ! x = array[i] + x;
X3 ! y = foo(x);
X4 - x = x - y;
X5 }
**** New ****
X6 for(i=0;i<MAX;i++) {
X7 + y = x + y;
X8 ! x = array[i] + x;
X9 ! y = foo(x,y);
X10 }

**** Old ****
Y1 for(j=0;j<MAX;j++) {
Y2 q = p + q;
Y3 ! q = array[j] + p;
Y4 ! p = foo1(q);
Y5 }
**** New ****
Y6 for(j=0;j<MAX;j++) {
Y7 q = p + q;
Y8 ! q = array[j] + q;
Y9 ! p = foo1(p,q);
Y10 }

representing edit operation types, such as + for added lines,
- for deleted lines, and ! for modified lines. It also removes
diff specific meta information such as a revision number, a
modification date, etc. By running CCFinderX [15] on the
pre-processed patches, it finds a set of cloned region pairs
across the input patches.

Repertoire currently uses a minimum token threshold,
40 tokens for CCFinderX, because using 40 tokens led to the
best precision and recall among the threshold values that we
tested. In the next section, we describe how we select a min-
imum token threshold for CCFinderX through an accuracy
evaluation of Repertoire in detail.

Repertoire then removes cloned region pairs between
the old context and the new context of patches, because
these pairs represent cloning relations between deleted lines
in the old context and added lines in the new context, and
thus do not exhibit similar program modifications. For ex-
ample, given the two patches, Px and Py, CCFinderX finds
three pairs of cloned regions: (lines X2 to X3, lines Y3 to
Y4), (lines X6 to X10, lines Y6 to Y10) and (lines X7 to X8,
lines Y2 to Y3). Then Repertoire removes a pair of cloned
regions, (lines X7 to X8, lines Y2 to Y3), from the results
because it does not represent similar edits.
2© Retrieve edit operation sequences from the cloned
regions. Repertoire then identifies edit operation se-
quences for the cloned regions in the previous step. For
example, Repertoire retrieves edit operation sequences for
each cloned region, lines X2 to X3, lines Y3 to Y4, lines X6
to X10, and lines Y6 to Y10. For example, lines X2 to X3
produces a sequence of two modifications, noted as ‘!!’.
Lines X6 to X10 produces a sequence of three edit opera-
tions, noted as ‘+!!’ because X6 and X10 are unchanged
lines. Lines Y3 to Y4 produces a sequence of two modifica-
tions, noted as ‘!!’. Lines Y6 to Y10 produces a sequence
of two modifications, noted as ‘!!’ because Y6, Y7, and
Y10 are unchanged lines.
3© Identify similar edit operation sequences using
the bi-gram matching. To find similar edit sequences,
Repertoire uses the bi-gram matching algorithm [1]. We
use a bi-gram matching instead of the longest common sub-
sequence algorithm [14], because the bi-gram matching could
allow slight variations in edit sequences. When matching
edit operations, we match added lines (+) with modified lines
(!) of a patch’s new context, because they have the same
effect. Similarly, we match deleted lines (-) with modified
lines (!) of a patch’s old context. As a result of bi-gram
matching, Repertoire finds similar program modifications

between the two patches Px and Py: similar deletions are
made to lines X2 to X3 and lines Y3 to Y4. Similar addi-
tions are made to lines X8 to X9 and lines Y8 to Y9.

Table 3 shows an example of ported edits found by Reper-
toire. The corresponding change logs for FreeBSD and
NetBSD show that the device support for RTL8211C(L) was
ported from FreeBSD to NetBSD. Note that the old code
fragments in the two projects are not exactly clones of each
other according to CCFinderX, though both code fragments
experienced similar program modifications. This example
highlights that detecting ported edits requires finding simi-
lar edits as opposed to finding similar code fragments a priori
and monitoring edits to only the found clones.

3.3 Accuracy Evaluation
To assess Repertoire’s accuracy in detecting ported ed-

its, we manually construct a ground truth of ported edits
on a sampled evolution period of OpenBSD releases 4.4 to
4.5. To create the ground truth, we collect candidate ported
edits using the following two methods.

First, we extract program revisions whose change com-
ments indicate porting from NetBSD to OpenBSD. From the
CVS history of 11/1/2008 to 5/1/2009, which corresponds to
4.4 and 4.5 release dates, we search for keywords ‘NetBSD’
or ‘NETBSD’ in the check-in messages. For example, we find
file revision, src/sys/compat/ultrix/ultrix_misc.c:v 1.31

with the message ‘Make ELF platforms generate ELF core
dumps. Somewhat based on code from NetBSD.’

Second, we run Repertoire between the OpenBSD patch
from 4.4 to 4.5 and all preceding 12 release-level patches in
NetBSD up to release 4.0 using a very low token threshold,
20 tokens. By setting the token threshold to a very small
number, Repertoire over-approximates potential ported
edits. We then merge candidate ported edits from two dif-
ferent sources and removed false positive edits by manually
inspecting diff outputs and commit messages. As a result,
we construct the ground truth of ported edits at a line gran-
ularity for OpenBSD release 4.5: total 1429 lines of edits are
ported from NetBSD patches and these edits span across 90
files.
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Figure 1: Precision and recall values of ported edits
found by Repertoire while varying the token thresh-
old values from 20 to 100 tokens

We then compare the output of Repertoire against this
ground truth to measure its precision and recall, which are
defined as follows. Suppose that E denotes our ground truth,
and R represents the result of Repertoire.



Table 3: An example of ported edits found by Repertoire. Ported edits are colored in gray
A segment of FreeBSD patch A segment of NetBSD patch
Location: src/sys/dev/mii/rgephy.c; revision 1.20 Location: src/sys/dev/mii/rgephy.c; revision 1.23

Change Log: Add RTL8211C(L) support. Disable advanced
link-down power saving in phy reset

Change Log: Support for RTL8211C(L) phy from FreeBSD

Date: 2008/07/02 Date: 2009/01/09
--- 531,548 ----
531. static void
532. rgephy_reset(struct mii_softc *sc)
533. {
534. + struct rgephy_softc *rsc;
535. + uint16_t ssr;
536. +
537. + rsc = (struct rgephy_softc *)sc;

538. + if (rsc->mii_revision == 3) {

539. + /* RTL8211C(L) */

540. + ssr = PHY_READ(sc, RGEPHY_MII_SSR);

541. + if ((ssr & RGEPHY_SSR_ALDPS) != 0) {

542. + ssr &= ~RGEPHY_SSR_ALDPS;

543. + PHY_WRITE(sc, RGEPHY_MII_SSR, ssr);

544. + }

545. + }
546.
547. mii_phy_reset(sc);
548. DELAY(1000);

--- 583,604 ----
583. rgephy_reset(struct mii_softc *sc)
584. {
585. struct rgephy_softc *rsc;
586. + uint16_t ssr;
587.
588. mii_phy_reset(sc);
589. DELAY(1000);
590.
591. rsc = (struct rgephy_softc *)sc;
592. + if (rsc->mii_revision < 2) {
593. rgephy_load_dspcode(sc);

594. + } else if (rsc->mii_revision == 3) {

595. + /* RTL8211C(L) */

596. + ssr = PHY_READ(sc, RGEPHY_MII_SSR);

597. + if ((ssr & RGEPHY_SSR_ALDPS) != 0) {

598. + ssr &= ~RGEPHY_SSR_ALDPS;

599. + PHY_WRITE(sc, RGEPHY_MII_SSR, ssr);

600. + }

601. + } else {
602.
603. PHY_WRITE(sc, 0x1F, 0x0000);
604. PHY_WRITE(sc, 0x0e, 0x0000);

Table 4: Examples of a false positive and a false negative

Date Project Committer ChangeLog
FP 1999/03/26 NetBSD bouyer src/usr.bin/eject/eject.c: Oups, complete braindamage yesterday.

DIOCEJECT does the rigth thing for both disks and CDs, it’s just
don’t have to call DIOCLOCK before, unless we’re doing a forced eject:
DIOCEJECT will check for device use and unlock the door if allowed.

2008/07/23 OpenBSD djm src/usr.bin/ssh/servconf.c : do not try to print options that have
been compile-time disabled in config test mode (sshd -T); report from
nix-corp AT esperi.org.uk ok dtucker@

FN 2009/01/29 OpenBSD thib src/sys/nfs/nfs_bio.c : Use a timespec instead of a time t for the
clients nfsnode mtime, gives us better granularity, helps with cache
consistency.Idea lifted from NetBSD.

Table 5: Sample ported edits found by Repertoire.

Date Project Committer ChangeLog
1. 1997/04/23 NetBSD scottr Implement new crash dump format. Mostly taken from hp300, ex-

tended to support multiple physical RAM segments by me. Garbage
collect functions obsoleted by this change.

1999/04/23 OpenBSD downsj Kcore dump, from NetBSD.
2. 2002/03/01 OpenBSD espie Kill hand-made memory allocation code that is definitely buggy. Re-

place with simple wrapper around malloc, at least this works, and it’s
easier to debug anyways.

2004/07/07 NetBSD mycroft Cleanup of ksh memory handling from OpenBSD via Stefan Krueger
in PR 24962.

3. 2006/09/09 FreeBSD ambrisko Add support to bge(4) to not break IPMI support when the driver
attaches to it. Try to co-operate with the IPMIASF firmware accessing
the PHY

2010/01/28 NetBSD msaitoh Introduce IPMI and ASF related code from FreeBSD.
4. 2009/07/03 OpenBSD dlg this is a rather large change to add support for the BCM5709.

2010/01/27 NetBSD sborrill Add support for the Broadcom BCM5709 and BCM5716 chips



Precision: the percentage of ported lines found by Reper-

toire that are also present in the ground truth, i.e.,
|E ∩R|
|R|

Recall: the percentage of the ground truth that is also

present in the Repertoire’s results, i.e.,
|R ∩ E|
|E|

To select a token threshold setting for CCFinderX, we
then vary the token size from 20 to 100 tokens in increment
of 10 and measure the accuracy of Repertoire. Our ac-
curacy evaluation finds that, at token size 40, the precision
value is 0.94 and the recall value is 0.84. The values are
shown in Figure 1. The F-measure is defined as a harmonic
mean of precision and recall and it reaches a maximum value
of 0.88 at token size 40. We use this threshold of 40 tokens
throughout the empirical study in Section 4.

Table 4 shows examples of a false positive and a false nega-
tive reported by Repertoire, when using a token threshold 40
for CCFinderX. In the case of the false positive, Repertoire
detects ported edits between the two patches, though there is
no semantic similarity between surrounding contexts. Such
false positive was found because false positive clones could
be found by CCFinderX. In the case of the false negative,
Repertoire was not able to detect ported edits, because the
contiguous lines of ported edits are less than 40 tokens long.

Table 5 shows few samples of the positive ported edits be-
tween the three BSD projects. As shown in the correspond-
ing commit messages, BSD developers port bug fixes and
new features from peer projects. Among the four examples,
examples 1 through 3 show ported edits that are found by
Repertoire and validated by their respective change logs.
The 4th example is found by Repertoire but there is no
explicit mention of other projects in the commit messages.
Such example shows that commit messages alone are inade-
quate for identifying ported edits and highlights the benefit
of using an automated tool like Repertoire for an empirical
study of cross-system porting in the BSD family.

4. STUDY RESULTS
This section describes the characteristics of ported code

changes in the BSD family. Section 4.1 describes the extent
and frequency of ported changes. Section 4.2 compares de-
fect density of ported changes against non-ported changes.
Section 4.3 describes the work load distribution of developers
who port changes from other projects. Section 4.4 describes
the time taken to port patches from other projects, and Sec-
tion 4.5 describes the code locations where ported changes
were made to.

4.1 What is the extent of changes ported from
other projects?

We analyze the extent of ported changes for individual
projects by comparing program patches at a release granu-
larity. For example, to measure the percentage of NetBSD
changes originated from OpenBSD and FreeBSD, we com-
pute program patches for all NetBSD releases. A NetBSD
patch ∆NetBSD(i−1,i) is generated using cvs diff between
release i and its prior release i− 1. We then list all patches
created in the peer projects prior to the release date of
NetBSD release i. Based on the assumption that the code
changes made in the peer projects must be available first to
be transferred to another project, we compare these patches
with ∆NetBSD(i−1,i) using Repertoire and identify the
number of code lines ported from peer projects in each patch.
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Free Net Open Both Total
Only Only Only

FreeBSD AVG 3.19% 8.36% 2.22% 13.77%
MED 0.94% 5.74% 1.49% 10.78%

NetBSD AVG 2.71% 7.87% 4.94% 15.52%
MED 1.31% 4.65% 3.08% 14.34%

OpenBSD AVG 4.61% 4.20% 1.93% 10.74%
MED 3.34% 3.30% 1.64% 9.52%

Each row represents a target project, each column represents a source
project.

Figure 2: The porting rates in the BSD family

The porting rate in each release is computed as the per-
centage of line additions and deletions ported from other
projects out of the total number of line additions and dele-
tions in the patch. For example, for Table 3, the porting
rate would be 80% because there are 10 line additions in the
NetBSD patch and Repertoire finds that 8 out of them
are ported from FreeBSD. We calculate the average porting
rate across all releases of a project as:

avg. porting rate =

∑
releases ported edits∑
releases total edits

The porting rate of NetBSD across 15 releases ranges from
3.25% to 75.16%. The average number of ported line ad-
ditions and deletions per NetBSD release is 45,429 CLOC
(changed LOC) and the average size of NetBSD patch is
292,667 CLOC, producing an average porting rate of 15.52%.
On average ported edits are 12,127 out of 88,053 CLOC in
FreeBSD and 16,927 out of 157,612 CLOC in OpenBSD,
resulting in an average porting rate of 13.77% and 10.74%
respectively. Figure 2 shows average porting rates for indi-
vidual projects and their median values. Some ported ed-
its are from one project only while other ported edits are
found from the patches of both projects. For example, out
of 13.77% of ported edits in FreeBSD patches, 3.19% comes
from NetBSD patches only, 8.36% comes from OpenBSD
patches only, and the rest 2.22% is found in both NetBSD
and OpenBSD patches. In all three projects, the median
value is lower than the average value. In most releases, the
amount of ported edits is lower than the average, while in
some releases, ported edits consist of a significant portion of
individual patches. In the BSD family, porting is a periodic
phenomenon.



(1996 - 2000) (2000 - 2011)
m c p-value m c p-value

Free 1.89 5.37 0.51 -1.27 22.12 0.13
Net -16.03 82.09 0.03 0.08 11.54 0.87
Open 1.42 6.38 0.48 -0.39 14.54 0.53

To understand porting rate changes, we apply linear re-
gression on the data set of Figure 2. The results are in the
form of y = mx + c where y is a porting rate and x is a
release year and are shown in the table above. The porting
rate since year 1996 does not necessarily decrease over time
in FreeBSD and OpenBSD. The linear regression analysis of
porting rates since year 2000 shows no negative m values,
where p-value < 0.05.

Porting consists of a significant portion of the BSD fam-
ily evolution and porting rates do not necessarily decrease
over time. These results call for new tool support for notify-
ing relevant developers of potential collateral evolution and
propagating the changes automatically.�

�

�

�
Porting consists of a significant portion of the BSD
family evolution, corresponding to 14%, 16%, and

11% porting rates on average in FreeBSD, NetBSD,
and OpenBSD.

4.2 Are ported changes more defect-prone than
non-ported changes?

To investigate the relationship between bug fixes and ported
changes, we first identify all bug fixes made to individual
BSD projects by searching for keywords, ‘bug,’ ‘fix,’ and
‘patch’ in change commit messages using a heuristic similar
to Mockus and Votta [21]. For each file, we then measure the
cumulative number of changed lines (CLOC), ported lines
(Ported CLOC), and non-ported lines (Non-Ported CLOC)
over all releases using the results of ported edits found by
Repertoire. We consider only source files and exclude
header and configuration files. For example, in total, 4,754,862
line additions and deletions are made in FreeBSD over the
study period, out of which 654,858 lines are identified as
ported edits and 4,100,004 lines are non-ported edits.

We then measure the Spearman rank correlation between
the number of bug fixes and ported CLOC at the file gran-
ularity [30]. Similarly, we measure the correlation between
bug fixes and non-ported CLOC. We use a rank correlation
to control for churn, in other words, the total number of
added and deleted lines. In all three projects, the correla-
tion between bug fixes and ported edits is weaker than the
correlation between bug fixes and non-ported edits: 0.15
(ported) vs. 0.25 (not-ported) in FreeBSD, 0.36 vs. 0.42 in
NetBSD, and 0.32 vs. 0.38 in OpenBSD. These correlations
are statistically significant with p-values < 2.2e-16. In all
three projects, the correlation between churn and bugs is
higher than the correlation between ported edits and bugs.
While code churn is highly correlated with defects and is a
good predictor of bugs [22], our results indicate that ported
churn is likely to be relatively more safe and reliable than
non-ported churn.

These results indicate that developers port well-tested bug
fixes and feature implementations from peer projects rather
than risky and experimental features. This benefit of selec-
tive porting is aligned with Cordy’s observation. In finan-
cial software industry, copying an existing product to create

Table 6: Spearman rank correlation between bug
fixes and ported changes vs. non-ported changes

CLOC Ported
CLOC

Non-
Ported
CLOC

FreeBSD 4754862 654858 4100004
Correlation with bugs 0.26 0.15 0.25
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16
NetBSD 4097338 636006 3461332
Correlation with bugs 0.41 0.36 0.42
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16
OpenBSD 4728360 507810 4220550
Correlation with bugs 0.37 0.32 0.38
p-value < 2.2e-16 <2.2e-16 < 2.2e-16

a variant product is a recommended practice [6], because
software forking allows developers to independently evolve
product variants and reduces the risk of collective system
failures caused by using a common platform.�

�

�

�
Files with ported edits are less defect-prone than the

files with non-ported edits. This indicates that
developers may selectively port well-tested features

and bug fixes from peer projects.
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Free Net Open Both Total
Only Only Only

FreeBSD AVG 6.65% 5.52% 13.95% 26.12%
MED 4.63% 5.47% 14.05% 25.18%

NetBSD AVG 5.73% 20.13% 32.99% 58.85%
MED 3.83% 20.18% 43.45% 68.19%

OpenBSD AVG 6.40% 12.89% 25.56% 44.85%
MED 6.71% 12.79% 26.56% 45.53%

Each row represents a target project, each column represents a source
project.

Figure 3: The percentage of developers who port
changes from other projects per release

4.3 How many developers are involved in port-
ing patches from other projects?

We hypothesize that the maintenance cost of forked projects
is high and the porting effort is prevalent, if it involves a
large percentage of development communities. To investi-
gate this hypothesis, we identify developers who commit-
ted ported edits using cvs annotate and compute the total
number of those developers in each release. For release i, the
percentage of developers involved in porting is defined as the
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Figure 4: The workload distribution of developers of ported changes vs. non-ported changes in terms of
entropy. X axis represent releases for each project.

ratio of the number of developers who ported edits in release
i to the total number of active contributors of release i. Fig-
ure 3 shows the average percentage of developers who port
changes per release. On average, 26.12% (38 out of 145),
58.85% (91 out of 155), and 44.85% (43 out of 96) of com-
mitters are involved in porting changes from peer projects
per release in FreeBSD, NetBSD, and OpenBSD. Out of all
active developers, around 13.95%, 32.99% and 25.56% port
changes from both the other two projects.

To investigate the work load distribution among the de-
velopers who port changes from peer projects, we calculate a
normalized entropy score of developer contribution. Entropy
is a well-known measure of uncertainty [27]. A normalized
static entropy is used by Hassan et al. to account for the
varying number of active units over time (the number of ac-
tive developers in our case vs. the number of modified files
in Hassan’s case) [13] and is defined as follows:

normalized entropy = −
n∑

i=1

pi ∗ logn(pi)

where pi is the probability of a line modification that be-
longs to author i, when there are n unique active devel-
opers. We compute this entropy score for each release. A
low entropy score implies that only a few developers make
most of the modifications. If the entropy is high, it implies
that the work load is more equally distributed among the
contributors. Figure 4 shows that the entropy measure of
ported edits vs. non-ported edits over all releases. The dark
gray line (the developer entropy of ported changes) stays be-
low the light gray line (the developer entropy of non-ported
changes) in all three projects. The work load distribution is
more skewed for ported changes than non-ported changes,
implying that some do much more porting work than others.�
�

�
�

A significant portion of active committers port
changes from other projects.

4.4 How long does it take for a patch to prop-
agate to different projects?

We investigate how long it takes for a patch to propagate
from one project to another. We measure the difference
between the release date of a source patch and the release

date of a target patch for each ported line. We then calculate
the average days to propagate a patch, which is defined as
follows:

porting time =

∑N
r=1

∑L(r)
l days to port l in release r∑N

r=1 L(r)

where L(r) is the total number of ported lines of code in re-
lease r and N is the total number of releases in a project. It
takes on average 734, 725, and 944 days to port an edit from
other projects to FreeBSD, NetBSD, and OpenBSD respec-
tively. Figure 5 shows a cumulative distribution of ported
edits vs. propagation time in months. On average 50% of
ported changes migrate within 10, 13, and 20 months in
FreeBSD, NetBSD, and OpenBSD respectively, which cor-
respond to 2.11, 1.09, and 2.95 releases when we map the
propagation time to the number of releases. However, some
changes take a very long time to propagate. For 90% of all
ported changes to migrate, it takes 66 months (19 out of
54 releases) in FreeBSD, 66 months (5 out of 12 releases) in
NetBSD and 81 months (17 out of 33 releases) in OpenBSD.
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Figure 5: The cumulative distribution of ported
changes from other projects vs. patch propagation
time.

Though individual BSD projects mostly have managed to
keep up-to-date with porting features and bug fixes from



other projects, some changes still take a very long time to
be incorporated by other projects.�
�

�
�

While most ported changes migrate to peer projects in
a relatively short amount of time, some changes take

a very long time to propagate to other projects.

4.5 Where is the porting effort focused on?
If ported edits are spread throughout the codebase, we

could conclude that the developers who port changes from
other projects may need to spend a significant amount of
time, gaining expertise on different parts of the codebase.
To investigate where ported edits are made, we measure the
file level distribution of ported changes in each BSD project.
We consider a file to be affected by porting in the ith release,
if it is modified by at least one ported edit since release i−1.
We define the ratio of files edited by porting in the ith release
as the number files with ported edits in release i divided by
the total number of edited files in release i. Figure 6 shows
the average percentage of files with ported changes. On
average, ported changes touch 11.58% of all modified files in
FreeBSD, 18.62% in NetBSD, and 15.86% in OpenBSD. A
linear regression on the data-sets of Figure 6 shows that the
ratio of files modified affected by ported edits is decreasing
over time. In the table below, the results are in the form of
y = mx+c, where y is the percentage of edited files affected
by porting and x is a release year.

m c p-value
FreeBSD -0.32 14.46 0.30
NetBSD -1.29 31.46 0.04

OpenBSD -0.64 22.21 0.02

These results indicate that porting in the BSD projects
is mostly a localized phenomenon. To further understand
where this porting effort is focused on, we also calculate the
total number of ported lines over all releases in each file. We
rank the files in terms of ported edits for the entire study
period. Table 7 shows top 10 sub-directories in each project
with the highest number of ported lines. These results in-
dicate that porting is localized to a few sub-directories. For
example, 21.54% of total porting over the entire study pe-
riod occurred in openssl sub-directory for FreeBSD, 20.34%
in arch sub-system for NetBSD and 24.57% in device-driver
for OpenBSD. In fact, for all three BSD projects, most of
the porting efforts are concentrated on the device drivers,
crypto APIs, networking services, SSL (secure socket layer)
related features, etc.�
�

�
�

Ported changes affect about 12% to 19% of modified
files and porting effort is concentrated on specific

parts of the BSD codebase.

5. THREATS TO VALIDITY
Threats to construct validity concern the relation between

theory and observation. We rely on the effectiveness of the
widely used clone detector CCFinderX to identify similar
edit contents among patches. To limit the presence of false
positives, we restrict our focus on substantially similar edit
contents—at least 40 tokens long—and consider the extra
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Free Net Open Both Total
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FreeBSD AVG 2.96% 5.30% 3.32% 11.58%
MED 2.23% 3.96% 3.45% 11.35%

NetBSD AVG 2.98% 11.53% 4.11% 18.62%
MED 2.25% 8.11% 4.04% 15.19%

OpenBSD AVG 5.66% 6.63% 3.57% 15.86%
MED 4.84% 5.64% 3.30% 14.45%

Each row represents a target project, each column represents a source
project.

Figure 6: The percentage of edited files due to port-
ing

dimension of matching the edit operation type in addition
to patch content similarity. Thus, lines within patches are
considered similar, only if both their contents and opera-
tions are similar. Furthermore, we evaluate the accuracy of
Repertoire by comparing its results against the manually
created, ground truth of ported edits on a sampled release
patch (OpenBSD 4.5). In order to facilitate the replica-
tion of our study, we make our tool and results available at
http://dolphin.ece.utexas.edu/Repertoire.html.

In terms of temporal granularity, we use program patches
between each consecutive release pair; thus, our study can-
not detect ported edits, which are once made but reverted
prior to the next release. When preparing patches using cvs

diff, we limit unchanged lines before and after each changed
block up to three lines—we speculate the amount of context
lines does not affect our result, because those unchanged
lines are not counted as ported edits by Repertoire.

In terms of threats to internal validity, it is possible that
a weak correlation between ported changes and bug fixes is
caused by different factors, such as the expertise level of de-
velopers who work on subsystems where porting is frequent.
Our findings in Section 4.2 indicate only correlation with
defect density not causation.

External validity concerns the generalization of the find-
ings. Our study focuses on FreeBSD, NetBSD and OpenBSD.
While we acknowledge that our case study on BSD may not
generalize to other systems, we argue that our results on
the BSD family are meaningful—the BSD product family is
a long-surviving, very large product family, created by soft-
ware forking and our study findings generate a set of spe-
cific hypotheses to be tested in other forked projects such as
OpenSSH and SSH, MariaDB and MySQL, LibreOffice and
OpenOffice, and various distributions of Linux. We hope
that other researchers replicate our results and thereby al-

http://dolphin.ece.utexas.edu/Repertoire.html


Table 7: Top ten directories in individual BSD projects with the largest amount of ported changes. The %
values are the ratios of ported edits in the individual directories to all ported changes.

Rank FreeBSD NetBSD OpenBSD
1 src/crypto/openssl 21.54% src/sys/arch 20.34% src/sys/dev 24.57%
2 src/crypto/openssh 13.98% src/sys/dev 19.96% src/lib/libssl 16.36%
3 src/crypto/heimdal 13.31% src/crypto/dist 10.61% src/sys/arch 11.16%
4 src/sys/dev 8.95% src/gnu/dist 4.54% src/usr.sbin/ppp 6.27%
5 src/sys/contrib 5.26% src/sys/netinet 3.08% src/gnu/usr.bin 5.27%
6 src/lib/libc 3.08% src/lib/libc 2.81% src/sys/netinet 2.93%
7 src/usr.sbin/ppp 2.56% src/sys/netinet6 2.66% src/kerberosV/src 2.71%
8 src/gnu/usr.bin 1.93% src/sys/kern 2.56% src/lib/libc 2.31%
9 src/usr.sbin/pppd 1.59% src/sys/nfs 2.27% src/usr.bin/less 1.72%
10 src/sys/nfs 1.46% src/sys/dist 1.84% src/sys/kern 1.69%

low the community to build an empirical body of knowledge
on the impact of forking and porting on various aspects like
quality, dependencies, etc.

6. CONCLUSION AND FUTURE WORK
Software forking is considered an ad-hoc, low-cost alter-

native to principled product line development. Forking has
negative connotations because it requires developers to port
similar features and bug fixes from peer projects during soft-
ware evolution. As a first step toward understanding the lon-
gitudinal impact of forking on maintainability and assessing
whether forking is a sustainable practice, we developed an
automated cross-system porting analysis tool, called Reper-
toire.

By applying Repertoire to 18 years of parallel release
history of the BSD product family, we conducted an in-
depth case study of BSD projects. Our study found that
the maintenance effort of cross-system porting is significant.
About 10.74% to 15.52% of lines in BSD release patches
consist of ported edits. 26.12% to 58.85% of active devel-
opers participate in cross-system porting per release on av-
erage. These results together indicate that, while forking
has some benefit of allowing independent evolution, the cost
of cross-system porting is significant. Our study is also the
first to find that ported changes are likely to be more reli-
able than non-ported changes, showing the benefit of selec-
tively porting well-tested features. Furthermore, our study
found that over 50% of ported changes propagate to other
projects within 3 releases, while some changes take a very
long time to propagate. Currently, cross-system porting in
the BSD community seems to heavily depend on developers
doing their porting job on time.

Our results call for an automated approach of applying
similar program transformations to related contexts among
forked projects or notifying developers of potential collat-
eral evolution. To guide design of such approaches, we
plan to further study the types of adaptations required to
port changes across peer projects. In terms of future work,
we plan to understand the implication of license terms on
porting effort or information flow among a group of related
projects by combining our automated analysis with license
analyses by German et al. [11,12].

Acknowledgements
We thank Jihun Park for gathering the bug history data for
FreeBSD, NetBSD, and OpenBSD projects. This work was
in part supported by National Science Foundation under the
grants CCF-1117902, CCF-1149391, and CCF-1043810 and
by a Microsoft SEIF award.

7. REFERENCES
[1] G. W. Adamson and J. Boreham. The use of an

association measure based on character structure to
identify semantically related pairs of words and
document titles. Information Storage and Retrieval,
10(7-8):253–260, 1974.

[2] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey.
Cloning by accident: an empirical study of source code
cloning across software systems. In ISESE ’05:
International Symposium on Empirical Software
Engineering, pages 376–385, 2005.

[3] J. Andersen and J. Lawall. Generic patch inference. In
ASE ’08: Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software
Engineering, pages 337–346, 2008.

[4] M. Balint, R. Marinescu, and T. Girba. How
developers copy. In ICPC ’06: Proceedings of the 14th
IEEE International Conference on Program
Comprehension, pages 56–68, 2006.

[5] G. Canfora, L. Cerulo, M. Cimitile, and M. Di Penta.
Social interactions around cross-system bug fixings:
the case of freebsd and openbsd. In MSR ’11:
Proceeding of the 8th working conference on Mining
software repositories, pages 143–152, 2011.

[6] J. R. Cordy. Comprehending reality - practical
barriers to industrial adoption of software
maintenance automation. In IWPC ’03: Proceedings
of the 11th IEEE International Workshop on Program
Comprehension, pages 196–205, 2003.

[7] J. R. Cordy. Exploring large-scale system similarity
using incremental clone detection and live scatterplots.
In ICPC ’11: 19th IEEE International Conference on
Program Comprehension, pages 151 –160, 2011.

[8] M. Di Penta, D. M. German, Y.-G. Guéhéneuc, and
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