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Abstract—Code reuse has well-known benefits on code quality,
coding efficiency, and maintenance. Open Source Software (OSS)
programmers gladly share their own code and they happily
reuse others’. Social programming platforms like GitHub have
normalized code foraging via their common platforms, enabling
code search and reuse across different projects. Removing project
borders may facilitate more efficient code foraging, and conse-
quently faster programming. But looking for code across projects
takes longer and, once found, may be more challenging to tailor
to one’s needs. Learning how much code reuse goes on across
projects, and identifying emerging patterns in past cross-project
search behavior may help future foraging efforts.

To understand cross-project code reuse, here we present an in-
depth study of cloning in GitHub. Using Deckard, a clone finding
tool, we identified copies of code fragments across projects, and
investigate their prevalence and characteristics using statistical
and network science approaches, and with multiple case studies.
By triangulating findings from different methods, we find that
cross-project cloning is prevalent in GitHub, ranging from
cloning few lines of code to whole project repositories. Some
of the projects serve as popular sources of clones, and others
seem to contain more clones than their fair share. Moreover,
we find that ecosystem cloning follows an onion model: most
clones come from the same project, then from projects in the
same application domain, and finally from projects in different
domains. Our results show directions for new tools that can
facilitate code foraging and sharing within GitHub.

I. INTRODUCTION

Coding from scratch is expensive, both in time and effort.
So, programmers opportunistically reuse code and do so
frequently [13]. Often, programming of well-defined problems
amounts to simple look-up [29], first in one’s own, and then in
others’ code repositories, followed by judicious copying and
pasting. The bigger the corpus of code available, the more
likely it is that one will find what one is looking for [9].

The advent of software forges like GitHub and Google
Code, and Q&A sites like Stack Overflow, has significantly
enhanced this kind of opportunistic code reuse [5], [21], [26],
[31]; one can readily forage online for code and ideas, and
often reuse existing code. In fact, per Open Source ideology,
developers not only look for the opportunity to reuse code but
also advertise their own high-quality code for others to reuse
in paste-bin like web applications such as GitHub Gist [2],
Pastebin [3], and Codeshare [1].

Social coding ecosystems like GitHub present a fundamen-
tal shift in reuse opportunities. With millions of available
OSS projects hosted in GitHub, among which thousands
of developers freely migrate, GitHub provides an excellent
opportunity for collaboration and code reuse [8], [28]; in fact,
GitHub actively facilitates the process by providing features
like advanced code search and GitHub gist. The reused code
varies in size, ranging from few lines of code to methods, and
even larger—one can copy and reuse an entire project or a
set of files and make smaller modifications to cater to local
needs [23]1. Thus, ecosystem level code sharing and reuse may
be different from within project code reuse—one would expect
limited methods and file copies in a within project setting,
resulting in new kind of software development practices. In
this paper we focus on studying such ecosystem level code
sharing and reuse across multiple GitHub projects.

An established way to study code reuse is by analyzing code
clones [19], [24]. A “clone” is a snippet of code somewhere
that is surprisingly similar to code elsewhere, and can arise
from copy-pasting practices [15], automatic program gener-
ators [10], [17], [18], or even emerge independently, due to
the predictable syntax of underlying programming languages
and API usage [4]. Clones have been studied extensively in
the literature, primarily within single-project boundaries [14],
[16], as at the time, in the absence of the Web 2.0 and
environment-unifying source forges, searching and reusing
code from other projects would have been challenging. In the
past 5-8 years, GitHub has emerged as a universal platform
for maintaining repositories, with minimal boundaries between
projects. It, and other source forges have increased code
sharing and reuse, and by virtue of their historical maintenance
features, are now enabling us to study code cloning across
projects.

In this paper, we focus on studying cross-project cloning
in GitHub projects in order to understand the nature of code
sharing and reuse in an ecosystem. To our knowledge, this is
the first study of cross-project cloning in an ecosystem setting.
We selected 5, 753 Java projects from GitHub and analyzed
how much of their code are clones that are shared with other

1See StackExchange question: http://programmers.stackexchange.com/-
questions/-193415/best-practices-for-sharing-tiny-snippets-of-code-across-
projects



projects, as compared to code that has clones within the project
itself. We used Deckard [12], an established clone detection
tool, to detect both within and cross-project clones. We found
the following.

• Cross-project clones comprise between 10% and 30% of
all code clones within projects, and up to 5% of the code
base.

• Cross-project clones exist due to different reasons ranging
from implementing similar functionalities, to structural
similarity, to being auto-generated. A considerable pro-
portion of all cross-project clones are utility clones,
where entire files, directories or even projects are copied
with a minimum amount of change. They serve different
purposes such as exposing APIs and utility code reuse.

• Many projects are disproportionately sources for clones,
and many others contain surprising number of clones
from different projects. The majority of projects provide
more clones than they obtain.

• Code-cloning seems to follow an onion model: most
clones come from the same project, then from projects in
the same application domain, and lastly from projects in
different domains.

• We find evidence suggesting cloning is higher among
more experienced and active/diverse developers, and be-
tween projects with shared developers.

The rest of the paper is organized as follows. In Section II
we motivate our research and follow with a review of prior
work in Section III. The methods are described in Section IV,
followed by our results in Section V. In Section VI we discuss
potential threats that can affect our findings, and conclude
in Section VII.

II. RESEARCH QUESTIONS

As a first step towards understanding cross-project cloning,
we seek to identify the rate of code reuse within the GitHub
ecosystem. In particular, we want to know how many clones
are there, what is the rate of within vs. cross-project clones,
how many lines are cloned on average, and if there is a
correlation between project metrics and clone density. Once we
know the extent of cross-project clones, we are curious what
they look like, i.e., whether certain kind of code is cloned
more across the project boundaries. We ask all these in the
following question.

Research Question 1: What is the prevalence of within
and across project cloning, and what kind of code is
cloned?

Once we know the extent and nature of cross-project clones,
we focus next on where these clones originate from and end up
in. It is conceivable that some projects, by design or otherwise,
serve mostly as libraries or frameworks, and thus can be good
sources of cloned code, i.e., their code is being reused in many

other projects. Likewise, some projects, e.g., device drivers
heavy code, can borrow a lot from other code using similar
drivers, and thus may be more dependent on reusing code than
expected. Knowing which project has borrowed code from
which other projects, we link projects based on shared clones
to help us answer the following:

Research Question 2: Is there an asymmetry among the
projects, i.e., are there projects that serve as clone sources
more than their fair share? Moreover, are some projects
reusing other project’s code at a greater rate?

Lastly, we investigate the ecosystem nature of GitHub in
order to understand the mechanisms behind where clones
originate, and if there is a social mechanism related to their
propagation. Being a platform with uniformity across projects
for uploading and code search, GitHub enables easy searches
beyond one’s own project’s repository. In fact, GitHub, via
its gamified, uniform social coding environment, encourages
people to code in multiple projects at the same time. In fact,
it is not uncommon to find people who code on multiple
projects in the same day [32]. Code cloning certainly helps
with speeding up coding, and perhaps makes this possible.
So, naturally, we wonder if shared people between projects
correlates with sharing clones among the projects, i.e., is there
congruence between the network of shared clones and the
network of shared developers?

Additionally along these lines, we wanted to see if clones
are confined within certain functional domains. It is reasonable
to expect that projects in the same application domain, e.g.,
web development, share the same essential coding problems,
and use the same approaches to solve them. So, we wonder if
cross-project clones are more frequent between projects in the
same application domain? All these lead us to the following
research question:

Research Question 3: Can we find support for existing
mechanisms which promote cloning, such as multi-project
developers or specific application domains?

III. RELATED WORK

In general, code clones have been considered to be similar
code fragments [14], although the notion of similarity widely
varies and mostly depends on the underlying code clone
detectors. For example, the widely popular CCfinder [14]
detects clones based on lexical and syntactic analysis, while
Deckard [12] relies on Abstract Syntax Trees (AST) matching.
Rattan et al. have studied and summarized the majority of
clone detection techniques in their comprehensive review in
2013 [22].

By applying different clone detection techniques, previous
studies reported that as much as 10% to 30% of code in



many large scale projects may be clones (e.g., gcc-8.7%, JDK-
29% [14], and Linux-22.7%). Gabel and Su studied source
code uniqueness across a large code corpus of SourceForge
projects [9] and found a lack of uniqueness in code at a
granularity of 1 to 7 lines of source code. Software is not
only repetitive, but also changes in a repetitive way, as found
by multiple studies based on different Microsoft projects,
Linux, and multiple open source Java projects [6], [19], [24].
However, none of these studies have focused on cross-project
code cloning in a large scale ecosystem.

The most closely related work to ours, by Ossher et al.
[20], studied cross-project cloning in files across 13,000 Java
projects, from multiple ecosystems. However, they were lim-
ited to measuring cloning at the granularity of files, vs short
code snippets, and did not differentiate between within and
cross-project cloning. In this work we focus on both file and
code fragment cloning. We further analyzed clones in multiple
temporal, spatial, and developer dimensions to understand
which projects in an ecosystem contributed most clones, or
whether certain developers promote more clones than others.

Among the other cross-project cloning studies, Ray and
Kim found evidence of significant similar changes among the
BSD product family [23]. Al-Ekram et al. studied cloning
in similar software and concluded that many times clones
develop accidentally due to several reasons such as following
protocols [4]. We also found evidences of accidental cloning
in cross-project settings.

Nguyen et al. [19] reported up to 70-100% of repetitive
source code changes across 2,841 open source Java projects,
and the repetitiveness is higher and more stable in across
projects vs. within projects. However, code changes are not
similar to static code and thus, study of repetitive changes
are different than code clone study. For example, a study of
repetitive changes may ignore utility files as they are seldom
changed in software evolution.

IV. METHODOLOGY

There are a number of ways to define code clones. In
general, two non-overlapping code fragments C1 and C2 are
clones, if C1 and C2 are “similar by some given definition of
similarity” [27]. More formally, to decide if C1 and C2 are
clones, we need a similarity function F, F(C1,C2) ≥ σ, where
σ is a similarity threshold [30].

In this work, we use Deckard [12], an abstract syntax tree
(AST) based clone detection tool to detect clones. So, we
operationalize our definition of clones as follows:

If the AST structures of code fragments C1 and C2 are
exact matches, as per Deckard (irrespective of identifier
names and literal values), we consider the two code
fragments clones of each other. In this case, σ represents
the size of the two AST trees.

We consider exact tree matches to study intentional cloning
rather than accidental ones [4] as much as possible. Note that,
once copied, a clone will likely change as it gets adapted to suit
the programmer’s goal. Thus, an exact tree-match algorithm
will be underestimating actual code reuse, but it will provide
a solid lower bound for it. We do allow in the following, for
exact clones of different thresholds (lengths), which allows as
to relax this definition a bit.2

Our methodology involved several steps, including project
selection, repository cloning, clone mining, domain analysis,
and statistical analysis of the results.

A. Project Selection

We used the January 4th, 2014 dump of the GHTorrent
database [11] to mine the list of users, commit history and
other meta-data about projects in GitHub. We selected Java
projects that had at least 2 developers, were at least 1 year old,
and had more than 10 commits. These criteria remove smaller
and younger projects, most of which have a single developer,
and usually do not contribute much to the ecosystem, and
would have skewed our results [7]. We also eliminated projects
that were forked using GitHub interfaces, as they would highly
skew our findings due to their duplicate code.

Overall, 8, 599 projects matched our criteria above and were
still viable at the time of our data gathering (Sept. 2015).
After running the initial clone detection algorithm on those, as
described later in the paper, we were left with 5, 753 projects in
which we found code clones. Between them they have 23,000
developers, 1.04M files, 105M LOC and are in age between
1 and 6 yrs old.

B. Identifying Project Domains

To identify the domain of a project, we employed a tool de-
veloped by Ray et al. [25]. It uses Latent Dirichlet Allocation
(LDA), a popular topic analysis algorithm, on the projects’
readme text and GitHub description, to identify the topic of
each project. First, we detected 30 distinct topics and estimated
the probability of each project belonging to these topics.
From each topic, we then removed project-specific keywords
(e.g., facebook, slime) and focused only on the keywords
representing underlying functionalities. Next, we manually
inspected the resulting topics and found appropriate domain
names that describe the topics. Finally, we found six main
domains corresponding to these topics: Application domain
(end user programs), Database, CodeAnalyzer (e.g., compiler,
parser, etc.), Middleware (e.g., Operating Systems, Virtual
Machines, etc.), Library code (e.g., APIs), and Framework
(e.g., SDKs).

C. Identifying Clones

We used Git to gather the repositories for all 8, 599 projects,
and rolled back each repository to January 4th, 2014. We

2Since shorter exact clones can capture, to some extent, more variability
during longer code evolution.



TABLE I. Parsed clone information based on Deckard output.

CloneID CloneSubID ProjectName FileName From Length
01 01 Distrotech cyrus-sasl java/CyrusSasl/SaslOutputStream.java 48 32
01 02 mb-linux-msli uClinux-dist/lib/libcyrussasl/java/CyrusSasl/SaslOutputStream.java 48 32
02 01 encog-java-examples src/main/java/org/encog/examples/neural/gui/ocr/Entry.java 200 32
02 02 encog-java-workbench src/main/java/org/encog/workbench/tabs/query/ocr/DrawingEntry.java 194 32
03 01 agit agit-test-utils/src/main/java/com/madgag/agit/matchers/GitTestHelper.java 46 3
03 02 nexus gateway/src/main/java/org/isolution/nexus/xml/soap/SOAPMessageUtil.java 50 3
03 03 nexus gateway/src/main/java/org/isolution/nexus/xml/soap/SOAPMessageUtil.java 89 3

then used the Deckard tool [12] to identify clones present
in this collection. We chose Deckard because of its notable
performance on large data sets and because we had access
to its authors, that provided us the chance to fully utilize the
tool’s potential and get more accurate results.

In Deckard, there are 3 required parameters to specify
clones and their accuracy: “Stride”, “Similarity”, and “Token
Size”. For our study, we set Stride to infinity and Similarity
to 1, in order to find exact clones. Those correspond to
Deckard’s defaults, recommended in the original paper. For
Token Size, which specifies the minimum (token) code length
to be accepted as a clone, we used three different values: 20,
30 and 50. We chose those clone lengths so as to capture the
average length of a few lines of code, a code block, and a
method, respectively. With these choices, we are able to study
the effect of this parameter on our findings and observe how
various clone sizes differ in occurrence. Although Deckard is
very efficient, it only works on a single project. To identify
cross-project clones, we placed all projects’ repositories in
one umbrella directory, with one folder per project, and then
treated this as one large project. Once the cloning results were
gathered, we used the directory information of each file in
the results to de-convolve the found clones back into their
respective projects.

After parsing Deckard’s output, the results are stored in a
table, an excerpt of which is shown in Table I. We call a
clone a cross-project clone, if for the corresponding cloneID,
at least two of its instances come from two different projects.
In Table I all three clones are considered cross-project clones.
We call a clone a within-project clone if at least two of its
instances are from the same project. A clone can be both cross-
project and within-project; we call those hybrid clones (e.g.,
cloneID 3 in Table I).

D. Extracting Utility Clones

During our case-studies of cross-project clones, we found
multiple instances of entire files, directories, or in extreme
cases an entire project, present in multiple projects, with or
without minor changes. Such cloned artifacts often serve as
utility or library code and we call them as utility clones. We
extracted such utility clones based on their file names and
directory structures—they often share similar nomenclature as
reported by Ossher et al. [20]. For example, we identified files
engine/src/main/java/org/json/JSONArray.j-
ava and src/org/json/JSONArray.java of projects
HomeSnap and ModDamage as utility clones. While these

cases are indeed examples of cross-project code reuse, their
borrowing dynamics arguably differs from that of regular
clones. We therefore study them separately from other clones.

E. Constructing Ecosystem Graphs

To assess the overlap between cross-project cloning and
shared people between projects, we construct two graphs
from the datasets we gathered. The first is a co-clone graph
which has links between projects that share code clones. The
second, a co-developer graph, links projects with developers
in common between them.

More specifically, to construct the co-clone graph, we first
create an empty graph with each project as a node. We then add
a weighted edge between two projects if they contain instances
of the same clone, where the weight is the number of clones
in common between the two projects. We also keep track of
the oldest of all instances of a clone using git blame, by
ranking the dates of the blame output for the cloned lines. We
call that oldest instance the source and add an edge from all
projects containing more recent instances of that clone to the
project that contains the source. In this way, with respect to a
clone, all projects point to an “original” source of information,
in a star-like topology. Because of the exact clone approach we
adopted, a star topology is the best resolution we can get on
the history of a clone, since we can’t deduce more information
than the existance of the oldest instance, and all the copies.
Figure 1 shows the co-clone graph for clones with token size
50.

We construct the co-developer graphs as follows. As above,
we have a graph with projects as nodes, and two projects
are connected if there is a developer that has been active
in both. This results in a K-clique for each developer active
across K projects. Developers are not usually active to the
same extent in all the projects they participate in; they may
be heavily invested in some, and occasionally or even rarely
contribute to the rest. Thus, we introduce different cutoffs for
the relative level of contribution by defining a contribution
threshold θ. We consider developer d as a contributor to project
p at some fractional level θ, if the ratio of his/her contribution
(in terms of number of commits) to project p to his/her overall
contribution to all the projects P is at least θ. In other words:

NComd,p∑
pi∈P NComd,pi

≥ θ.

We have constructed the co-developer graphs for the values
of θ: 0%, 5%, 10%, 20%, 30%. To compare co-clone graphs



TABLE II. The resulting size of co-developer graphs with varying
θ. Values greater than 5% filter out too many edges.

θ 20 30 50
No. of Edges 0 91703 79384 552

5 8304 7623 60
10 4562 4170 35
20 2074 1885 12
30 984 910 4

No. of Nodes 5643 5282 435

with co-developer graphs, we induce the co-developer graph
by the co-clone graph. Table II shows the resulting graph sizes
for our choices of θ. Figure 1 shows the induced co-developer
graphs for θ=5%.

Fig. 1. Top: The co-clone graph for 50 Token clones. The coloring
corresponds to project domains. Bottom: The co-clone graph
induced co-developer graph, θ = 5%.

V. RESULTS AND DISCUSSION

We begin by characterizing the number of cross-project
clones.

RQ1: Cloning Prevalence in GitHub

Table III presents a summary of the extent of cloned code in
selected GitHub projects. In total, we find 354, 268, 243, 150,
and 13, 908 unique clones, for token sizes 20, 30, and 50,
respectively. Code clones make up between 5% to 10% of the

entire code base of these projects, and their average size ranges
from 5 to 15 LOC. We discuss the clones per categories of
interest, as defined in Sect. IV-C and Sect. IV-D.

TABLE III. Extent of Cloning across GitHub

Token Size
20 30 50

Projects with Clones 5753 5533 628
#Unique clones 354,268 243,150 13,908
#Unique within-project clones 246,390 170,729 12,664

(69%) (70%) (91%)
#Unique cross-project clones 121,565 59,589 1,037

(34%) (25%) (7%)
#Unique hybrid clones 53,512 21,276 389
#Unique utility clones 39,825 34,108 596

(11%) (14%) (4%)

Size of projects with clone * 104.85 103.39 13.27
Size of clones 9.86 8.31 0.67
Size of within-project clones 7.64 6.17 0.59
Size of cross-Project clones 4.85 2.93 0.1
Size of utility clones 0.93 1.09 0.04

Mean within-project clone size † 5.63 9.51 15.6
Mean cross-project clone size 5.21 9.63 20.8
Mean utility clone size 9.91 13.59 23.89
Median within-project clone size 4 7 11
Median cross-project clone size 4 6 13
Median utility clone size 6 8 12

* Total size of projects and clones are in Million LOCs (MLOC).
† Mean and median size of clones are in LOC.

(i) Within-project Clones. These are the most common type
of code cloning (69% to 91% of all clones) and have been
widely studied in the past [9], [14], [24]. In this paper, we will
focus mostly on the following, much less understood cloning.

(ii) Cross-project Clones. We find a large amount of cloned
code across multiple projects. At a smaller token size of 20,
nearly 34% of all identified clones come from other projects.
As the token size increases, the extent of cross-project clones
drops to nearly 7% at token size 50. This suggests that larger
chunks of code are less likely to be copied verbatim from other
projects, or at the least, they are less likely to have remained
unchanged after copying. The median size of within-project
and cross-project clones are statistically identical for 20 and
30 token clones but they start to diverge in 50 token clones,
with cross-project clones being larger than their counterparts.

We further look at how cross-project clone prevalence
depends on project size, i.e., whether larger projects have
more cross-project clones. For each project, we use two
metrics as proxies for clone prevalence: the total number of
cloned lines and the total number of files having cloned code.
Figure 2 shows the distribution of cloned lines w.r.t. project
size measured in LOC and the top subfigure of Figure 3 plots
cloned files vs. total files.3 The first plot shows that number
of cloned lines slowly increases as project size grows, but
with a sublinear trend. The latter plot shows the number of
cloned files increases linearly as the number of files increases
in a project. Since project size is highly correlated with total
number of files, such a trend can be explained if clones are

3We also investigated the correlation between clone density and project
size. The results were similar to those in Fig. 2.



20 Tokens 

Project Size (LOC)

C
lo

n
e
s
 L

O
C

0

500

1000

1500

0 1000 2000 3000 4000 5000

Counts

1
6

12
17
22
28
33
38
44
49
54
59
65
70
75
81
86

30 Tokens 

Project Size (LOC)

0

500

1000

1500

0 1000 2000 3000 4000 5000

Counts

1
6
10
15
19
24
28
33
38
42
47
51
56
60
65
69
74

50 Tokens 

Project Size (LOC)

0

500

1000

1500

1000 2000 3000 4000 5000

Counts

1
1
1
2
2
2
2
2
2
3
3
3
3
3
4
4
4

Fig. 2. Size of cloned lines in a project vs. projects’ size (LOC); we observe a sublinear trend.
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Fig. 3. Top: Files having cross-project clones vs. total files per
project showing a linear trend. Bottom: Percentage of cloned lines
per file showing a heavily skewed trend with a peak frequency
at clone density 2.5%. Both the figures consider clones at token
size 30.

non-uniformly distributed across files. To confirm that, the
bottom subfigure of Figure 3 presents a histogram of clone
density (i.e., number of cloned lines w.r.t. total lines) per file
across all studied projects. Here we ignore the files that do
not have a single cloned line. The histogram is heavily skewed

with a peak at 2.5% clone density indicating that cross-project
clone density varies significantly across files. This observation
holds for clones across the studied ranges of token sizes.

To understand the nature of cross-project clones, we man-
ually studied 90 unique clone instances, chosen randomly,
that were detected at token size 30 (see Table IV). 66%
of these clones appear as developers often reuse code to
implement similar functionalities, either by reusing smaller
code fragments (38%), or cloning an entire method’s body
(28%) (rows a and b in Table IV). For example, we find 7
unique clone instances where developers perform operations
like null checks and object initializations on a method’s
arguments before calling the method. There are other cases
where a similar code fragment is reused for adding new
objects to an object queue, putting elements in a hash map,
performing object serializations (e.g., toString method),
calling APIs in similar ways, etc. Such clones are closely tied
to data structure/API usage. Developers also clone entire meth-
ods to implement higher level functionalities (row b). Such
cloned methods can appear either in related, but non-identical
files (file/class names or directory structures resemble each
other), or in apparently unrelated files. For instance, method
connectSocket, which implements a socket connection
routine in Android applications for a given IP address and
port, is implemented identically in three files, AgeClient.java,
FakeSocketFactory.java, EasySSLSocketFactory.java, in the
projects App-Growth-Engine-Android-SDK, ReGalAndroid,
and cmsandroid, respectively. Such semantic clones can be
good candidates for pastebin like GitHub Gist [2] where peo-
ple frequently share their commonly used code snippets for fu-
ture use. In fact, the above example of the connectSocket
method is shared by developer darrikmazey in his GitHub gist
https://gist.github.com/darrikmazey/9521134. Further, (c) 32%
of clones across different projects show structural similarities
without deeper semantic resemblance. Iterating over while/for
loops, similar if-else structures, and array initializations are
few common examples in this category. Finally, we find (d)
two instances of clones where whole files are auto generated.



TABLE IV. Cross-Project Cloning: a case study of 90 uniquely cloned instances

Type of cross-project clones count patterns (individual count)

(a) Code fragments implementing similar functionalities 34 (38%) add new objects to object queue (2), wrapper methods to call set of other methods (2),
wrapper methods to null-check on method arguments or create the argument object
or initialize the arguments (7), iterate over an array to access a particular element (2),
Object serialization (3), putting elements in HashMap (2), read I/O (2), recursively
calling similar function (1), release resources/clean up routine (2), initializing memory
elements (2), similar API call (4), testing object initialization (1), similar exception
handling routine (4)

(b) Methods implementing similar functionalities 25 (28%) similar function in related files (18), similar functions in different files (7)

(c) Clones due to structural similarity 29 (32%) iterating in loop structure (6), array initialization (3), if-else structure (8), calling
methods with similar signature (6), similar class definition (3), long return statement
(3)

(d) Autogenrated files 2 (2%) WSDL files (1), ANTLR Translator Generator (1)

We note that clones may exist both within and across
multiple projects. We call such clones “hybrid” clones. In our
study, we find 53k, 21k, and 389 of those, respectively, for
our range of token sizes.

(iii) Utility Clones. We also notice a substantial amount of
clones where whole files or modules are reused with little to no
modification. As shown in Table III, such clones contribute to
11%, 14% and 4% of all unique clone instances at token sizes
20, 30, and 50, respectively. We find that such files/modules
are usually part of utility or library code and developers often
reuse them across multiple projects. We collectively call such
clones utility clones. Note that the utility clones are also
instances of cross-project clones where instead of copying
code fragments developers reuse entire files or modules across
projects. To investigate in details, we manually studied 264 of
such files that are cloned up to 9 projects and distinguish five
types of utility clones among them (see Table V): (a) cloning
library source code to expose APIs: Developers often copy
the entire source code of popular libraries to use their APIs.
For example, we find several copies of ActionBarSherlock,
an Android library for using action bar design patterns. (b)
Cloning Files/Modules to reuse utility code: Developers often
clone single utility files or modules to reuse some common
functionalities such as HTML or JSON file parser. (c) We
find several instances of Java standard library (e.g., java.io,
java.lang, and java.util code) code reused multiple times across
different projects. (d) Another common source of utility clones
is extensions of Java by third party vendors like Test Driven
Development (TDD) in Action, etc. (e) There are some other
sources of utility clones, like related projects, example or demo
code, etc. Ossher et al. [20] also reported similar types of file-
level cloning activities in SourceForge, Apache, Java.net and
Google Code projects; thus, our findings confirm theirs.

Once cloned in different projects, the utility files are seldom
changed. In fact, among all cloned files at token size 30,
56.12% of files were never modified, and 75% of files are
changed only up to 2.94% w.r.t. the respective file sizes. For
utility files that differ across multiple instances by at least one
line, Figure 4 plots the percentage of changed lines w.r.t. total
file size. The brighter region at the bottom in the hexbinplot

log(File Size)

%
 C

h
a

n
g

e

0

20

40

60

80

100

2 4 6 8

Counts

1
88
175
262
348
435
522
609
696
783
870
957

1044
1130
1217
1304
1391

Fig. 4. The distribution of change percentage vs file size in
utility clones at toke size 30.

indicates that even such files are limited to a small amount
of changes, with median of 3.95%. These results show that
utility clones are mostly static across different projects.

Result 1: A significant amount of code is reused across
GitHub projects, and the corresponding clones follow
fixed patterns.

Now that we have seen that cross-project cloning is quite
prevalent across GitHub projects, we proceed to analyze where
these clones are coming from. In the rest of this work, we only
present our results on cross-project clones.

RQ2: Sources of Clones

We investigate whether cloning is a uniform and symmetric
process. Recall that in the co-clone graphs, edges are directed
from a project with a newer instance of the clone to the project
with the oldest instance (as per git blame). For clarity of
discussion, we refer to out-edges as ”obtain” edges, and in-
edges as ”provide” edges, and to projects with more ”obtain”
edges as ”obtainers” and more ”provide” edges as ”providers”.
We of course recognize that our methodology does not allow



TABLE V. Utility Cloning: a case study of 264 cloned files

Type of Utility Clones Examples

(a) Cloning library source code to expose APIs Mobile development APIs like ActionbasSharlock, Game development APIs like Forestry,
Security protocol related APIs like SSL

(b) Cloning Files/Modules to reuse utility code Binary file processing utility, Android ListView, Date and Time Processing utility, Encoder/De-
coder, IO, HTML/JSON parser, utility for network protocols like DNS, HTTP, etc.

(c) Java Standard Library java.io, java.lang, java.util code, etc.

(d) Java Extensions Java extensions by some third party vendor like Test Driven Development (TDD) in Action ,
etc.

(e) Other Related/Duplicate projects, Example Code/Demo etc.
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Fig. 5. The weighted in-degree (indicating clone provider) and
weighted out-degree (indicating clone forage) distribution of co-
clone graphs with different token sizes. Each node represents
a project, and edge exists if two projects share a clone. The
weight of the edge represents number of unique clones between
two project nodes. We observe an overall rightwards shift of
the peak in the out-degree (i.e., forage) indicating most projects
forage clones than provide them.

us to be able to precisely pinpoint all causality implied by these
words. However, we maintain that if such causal relationships
were to exist, these words would capture them, and thus this
terminology is not arbitrary.

Figure 5 shows the distribution of weighted provide edges
(in-degree) and obtain edges (out-degrees) of projects in the
co-clone graph, as described in Section IV-E. We observe an
overall rightwards shift of the peak in the out-degrees. We
know that for directed graphs the sum of in-degrees over
all nodes equals the sum of their out-degrees. Thus, a peak
in the out-degrees (obtain) implies a heavier tail in the in-
degrees (provide) distribution. This indicates, in general, that
most projects obtain more code clones than provide them. The
heavier tail in in-degree distribution also implies that there are
few projects that act as super-sources of clones.

To investigate this further, Table VI shows the 10 highest
ranking projects in terms of weighted in-degree (provide)
and out-degree (obtain). As expected, we observe that the
IN top 10 lists in all three cases completely differ from
the OUT, i.e., major clone providers are different from the
greatest obtainers. For example, at token size 30, projects
like acceleo, android-sdk, and rwiki are top provider
of clones while projects android_platform, wl-rwiki,
and ecl are top obtainers.

We conclude that cloning is not an uniform process and
most projects obtain more clones than provide them. We
hypothesize that this asymmetry may be an important feature

that helps the GitHub ecosystem grow, and that projects
that are clone super-sources may be especially important for
contributing to increasing the code quality in the GitHub
ecosystem.

Result 2: Cross-system cloning is a directed and non-
uniform phenomenon and most projects “obtain” more
clones than “provide” them. There are also projects that
serve as hubs or “super-sources” of clones to other
projects.

RQ3: Mechanisms of Cloning

Next, we look for evidence of the existence of several poten-
tial mechanisms of cloning within GitHub: cloning within the
boundaries of domains, cloning among neighboring projects,
and finally, cloning by experienced and active members.

Cloning within Domain Boundaries: We selected cross-
project clones and checked whether the projects which share
clones are within the same domain or not. The results are
presented in Table VII which shows that cross-domain clones
outnumber within-domain clones by almost 2 to 1.

TABLE VII. The statistics of cross-domain and within-domain
clones based on the co-clone graphs

20 30 50
All Edges 808623 244948 4011

Within-Domain Edges 281700 96466 1400
Cross-Domain Edges 526923 148482 2611

Within/Cross Ratio 0.53 0.65 0.54

We further investigate this issue and quantify the frequency
of clones across different domains. For each domain we
normalize the number of clones it shares with other domains
(including itself) by the size of both domains i.e., the number
of projects in that domain:

Clones(Di, Dj) =

∑
Pk∈Di,Pl∈Dj

Clones(Pk, Pl)

|Di| × |Dj |
.

Here Clones(Pk, Pl) denotes the number of clones between
projects Pk and Pl, and |Di| denotes the number of projects
in domain Di

4. Such normalization is important because it
4This number is among the set of the projects that had any clones at all. So

the total sum of all domain sizes adds up to the first row numbers of Table III.



TABLE VI. Projects with highest weighted in- and out-degree in co-clone graphs. Project names are trimmed to fit on page.

20 30 50
Rank IN (Provide) OUT (Forage) IN (Provide) OUT (Forage) IN (Provide) OUT (Forage)

1 acceleo SIREn acceleo android platform nuxeo-features GoodData-CL
2 com.idega.block. EclipsePlugin android-sdk wl-rwiki slps Henshin-Editor
3 xDoc RobotML-SDK rwiki ecl OpenFaces cropinformatics-
4 mvdetsen jnr-x86asm is.idega.idegawe EclipsePlugin plexus-utils b3log-latke
5 com.idega.core OpenFaces jdnssec-dnsjava gatein-shindig ActionBarSherloc plexus-container
6 jedit-ruby-plugi ecl shindig mahout amplafi-json andlytics
7 VUE android platform mahout-commits log4jna MSMB coverity-plugin
8 rwiki wl-rwiki log4j Henshin-Editor jbidwatcher spring-ide
9 android-sdk osate2-ocarina android packages osate2-ocarina wl-calendar WISE-Portal

10 luaj Henshin-Editor com.idega.block. jgit jbosstools-base HomeSnap

removes the bias of larger domains having a larger code base,
and hence large amount of clones (see Figure 2). Finally, for
each domain, we measure the percentage of clones that come
from within and other domains. The results are in Figure 6.

Despite the initial appearance in Table VII, once we control
for domain size, there is a clear pattern that shows greater
concentration of clones within domains vs. across them. There
are a few exceptions in the heat maps, especially at token size
50, but the overall trend is more or less clear. We conclude
that cross-project clones are more likely to happen within the
boundaries of domains than across.

Cloning Among Neighboring Projects: A plausible cloning
mechanism between two projects is via the developers shared
between them, who, by actively participating in both projects,
bring code from one to the other. If that were the case,
our co-clone and co-developer graphs should show non-trivial
overlap. To study the overlap of the co-clone and co-developer
networks we use a simple graph congruence metric [33],
measuring the weighted edge overlap between the graphs:

Cong(A,B) =
∑

Ei∈A∩B
Weight(Ei)/

∑
Ei∈A

Weight(Ei).

We observed little to no congruence w.r.t. co-clone graphs
(Cong < 0.07), but we did observe some congruence w.r.t. co-
developer graphs ranging between 0.16 and 0.25 depending on
token size and other parameters such as contribution threshold
θ (see Section IV-E). We compared this against a baseline
distribution obtained through evaluating the congruence be-
tween randomized co-clone graphs and co-developer graphs
and found that our results are not significantly different from
the baseline distribution. Thus, we do not find evidence for
this cross-project cloning mechanism.

Cloning by Senior and Expert Developers: We investigated
the correlation between development team size and clone
density, depicted in Figure 7. A weak sublinear trend is
evident, as the clone density slowly increases with the number
of developers in a project. But, are all developers equally
participating in cloning, or are some more active than others,
and can we find out who?

To study whether certain attributes of developers would
be indicative of their rate of code cloning we gathered the
following measures for each developer who was the author of
at least one clone: (i) Number of Clones. The total number
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Fig. 7. Cross-project clone density vs. # developers in each
project (30 token clones). Axes are logged. We observe clones
superlinearly increasing with number of developers.

of distinct clones that was authored by the developer, (ii)
Clone Size. The total size (in LOC) of all clone instances
written by her, (iii)Number of Projects. The number of projects
the developer has participated in, (iv) Age. The first date she
has contributed to any of the mentioned projects, (v) Number
of commits. The number of times she has committed to the
mentioned projects.

Table VIII contains the Spearman correlation coefficient
between these features across our dataset, and show some
interesting correlations. Most evidently, prolific developers in
terms of number of clones may also clone the largest of them.
The correlation with the number of commits is not clear.

TABLE VIII. Correlation between developer features. # & size
are based on 20 token clones. The results were similar for larger
token sizes. For all values, p-val < 0.001.

Clone Size #Projects #Commits Age
#Clones 0.94 0.18 0.41 0.20

Clone Size 0.17 0.39 0.20
#Projects 0.51 0.33

#Commits 0.33

To further examine the effect of some of the above factors
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Fig. 6. Heat maps of Cross-domain clone frequency for token sizes 20, 30 and 50, left to right. Each shows % of cross-domain
clones between two domains, normalized by size of both. Red and orange indicate higher values, colder colors indicate lower values.

on the number of clones, while controling for the other factors,
we also ran a set of linear regressions, each with a different
set of dependent variables. However, none of these had an R-
squared fit higher than 0.09 indicating poor predictive value
of the models. We conclude that developers clone at different
rates, and beyond the high correlation noted above, there is no
immediate relationship between seniority, activity, or expertise,
and the frequency of cloning, at least not a linear or log-linear
relationship, given only these parameters. There may be other
parameters that when combined would provide further insight.

Result 3: Cross-project cloning is more prolific within
a domain boundary. Authorship of these clones does not
play an obviously important factor in cloning.

VI. THREATS TO VALIDITY

(i) Threats to Construct Validity. Our strict definition of
clones may have resulted in under-reporting the rates of
cloning. This decision was made to exclude accidental clones
as much as possible. Thus, the detection of source and sink
of clones is conservative: if some clones are changed after
copying, we won’t detect them as clones. However, if the
cloned code region is longer and a small portion was changed,
Deckard will be able to detect the unchanged cloned region.
Thus, our git blame analysis will miss smaller clones that
were changed subsequently. Running clone detection for all
changes, as in Ray et al. [24], would not have been feasible,
given the scale of our study.

The identification of utility clones was solely based on
nomenclature, and may have missed a number of such clones
with different file names. However, our results point towards
entire files being copied and such renaming being rare. Do-
main assignments may not be perfect, especially since some
projects could conceptually belong to several domains.

For the construction of the co-clone graphs, we assumed
all copies are “obtained” from the first/oldest source. That
may not be the case due to several reasons such as discovery

limitations, personal preference, and even an existing source
outside of the scope of our dataset. This is a valid threat, but
to our knowledge there is no information available that would
help identify the “real” source, and the only solution would
be direct query of developers, which is practically impossible.

(ii) Threats to Internal Validity. In our search for evidence
of cloning mechanisms, we were unable to find any support for
certain mechanisms, but this may be due to unknown factors,
that we do not capture in our dataset. Another issue is that
the clone classification in the case study is prone to personal
interpretation. To address this issue we used the feedback of
an external developer to validate our categorization.

(iii) Threats to External Validity. Our study discusses cross-
project cloning within one ecosystem (GitHub) and platform
culture and facilities may make our findings less applicable to
others. We only studied Java projects, the second-most popular
language in GitHub (after JavaScript). Different programming
languages, specially non-object-oriented ones, e.g., Perl or
Lisp may exhibit different patterns of cloning.

VII. CONCLUSION

In this paper we studied cross-project cloning in GitHub.
We find evidence that cross-project clones are found in a
significant portion of OSS code. Cross project clones are in
general restricted to projects of similar domain and follow
certain fixed patterns. Moreover, some projects share more
code than others. These findings can be used to facilitate
code discovery—one should prioritize code search within same
domains and in projects that often serve as super-sources.
Further, our study indicates there are certain code patterns
that are commonly used across many projects and can be
suitable candidates for code sharing—this observation calls
for a recommending tool for paste-bin applications.

Future work will focus on benefits of guided foraging, based
on a layered approach and favoring super-sources, and utility
libraries, as a first approximation to an effective cross-project
code search and reuse.
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