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Input to Compiler

if ( i = = j )\n\t z = 0 ; \n else\n\t  z = 1 ;
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if(i == j)
 z = 0;
else
 z = 1;



Lexical Analysis

Intermediate Code 
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Code Generation
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IR
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Target Language

if(i == j)
 z = 0;
else
 z = 1;

Break character stream into tokens (“words”)

‘if’ ‘(’ ‘i’ ‘==’ ‘j’ ‘)’ ‘\n’ ‘\t’ ‘z’ ‘=’ ‘0’ ‘;’ ‘\n’ ‘else’ ‘\n’ ‘\t’ ‘z’ ‘=’ ‘1’ ‘;’
if ( i = = j )\n\t z = 0 ; \n else\n\t  z = 1 ;

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR 
whitespaces identifier<z> op<=> number<0> <;> whitespaces 
keyword<else> identifier<z> op<=> number<1> ‘;’

1. Identify 
the substrings

2. Identify 
the token classes



Token Class 

▪ In English?
▪ Noun, verb, adjectives, …

▪ In Programming Language
▪ keywords, identifiers, LPAR, RPAR, const, etc.



Token Class 

▪ Each class corresponds to a set of strings

▪ Identifier
▪ Strings are letters or digits, starting with a letter
▪ Eg: 

▪ Numbers: 
▪ A non-empty strings of digits
▪ Eg: 

▪ Keywords
▪ A fixed set of reserved words 
▪ Eg:

▪ Whitespace
▪ A non-empty sequence of blanks, newlines, and tabs



Lexical Analysis (Example)

▪ Classify program substrings according to roles (token class)

▪ Communicate tokens to parser

Lexical Analysis

Syntactic Analysis 
(Parser)

Character stream

Token stream

Token = 
<Class, String>

Z = 1

- <Id, “Z”>
- <Op, “=”>
- <Numbers, “1”>

“Z”, “=”, “1” are called lexemes (an instance of the corr. token class) 



Lexical Analysis: HTML Examples

Here is a photo of <b> my house </b> 
<p><img src="house.gif"/><br/> 
see <a href="morePix.html">More Picture</a> if you liked that 
one.</p>
<text, "Here is a photo of"> 
<nodestart, b> 
<text, "my house"> 
<nodeend, b> 
<nodestart, p> 
<selfendnode, img> 
<selfendnode, br> 
<text, "see"> 
<nodestart, a> 
<text, "More Picture"> 
<nodeend, a> 
<text, "if you liked that one."> 
<nodeend, p>



Exercise

 x = p;
 while ( x < 100 ) { x++ ; }



Exercise

if(i == j)
 z = 0;
else
 z = 1;

Keyword/Identifier?

==/=?



Lookahead

▪ Lexical analysis tries to partition the input string into the logical units of the language. 
This is implemented by reading left to right. “scanning”, recognizing one token at a 
time. 

▪ “Lookahead” is required to decide where one token ends and the next token begins. 

if(i == j)
 z = 0;
else
 z = 1;

Keyword/Identifier?

==/=?



Lookahead: Examples

▪ Usually, given the pattern describing the lexemes of a token, it is relatively simple to 
recognize matching lexemes when they occur on the input. 

▪ However, in some languages, it is not immediately apparent when we have seen an 
instance of a lexeme corresponding to a token. 

▪ Lexical analysis may require to “look ahead” to resolve ambiguity.
▪ Look ahead complicates the design of lexical analysis
▪ Minimize the amount of look ahead

FORTRAN RULE: White Space is insignificant: VA R1 == VAR1

DO 5 I = 1,25 

DO 5 I = 1.25



Lexical Analysis: Examples

▪ C++ template Syntax:
▪ Foo<Bar>

▪ C++ stream Syntax:
▪ cin >> var

▪ Ambiguity
▪ Foo<Bar<Barq>>
▪ cin >> var



Summary So Far

▪ The goal of Lexical Analysis
▪ Partition the input string to lexeme
▪ Identify the token class of each lexeme

▪ Left-to-right scan => look ahead may require

▪ In reality, lookahead is always needed

▪ Our goal is to minimize thee amount of lookahead



REGULAR LANGUAGES



▪ Lexical structure of a programming language is a set of token classes. 

▪ Each token class consists of some set of strings. 

▪ How to map which set of strings belongs to which token class?
▪ Use regular languages

▪ Use Regular Expressions to define Regular Languages.



Regular Expressions

▪ Single character
▪ ‘c’ = {“c”}

▪ Epsilon
▪ �  = {“”}

▪ Union
▪ A + B = {a | a �  A} �  {b | b �  B} 

▪ Concatenation
▪ AB = {ab | a �  A ^  b �  B} 

▪ Iteration (Kleene closure)

▪
A* = �  =  A…..A (i times)

▪ Ap =      (empty string)

ε

𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

Ai

ε



Regular Expressions

▪ Def: The regular expressions over �  are the smallest set of expressions including

    R = �

       | ‘c’, ‘c’ �  �

| R + R

| RR

| R* 

    

𝛴

𝜀

𝜖 𝛴



Regular Expression Example

▪ �  = {p,q}
- q*
- (p+q)q
- p*+q*
- (p+q)*

▪ There can be many ways to write an expression

    

𝛴



Exercise

Choose the regular languages that are equivalent to the given regular language: (p + q)*q(p + q)*


A. (pq + qq)*(p + q)*


B. (p + q)*(qp + qq + q)(p + q)*


C. (q + p)*q(q + p)*


D. (p + q)*(p + q)(p + q)*



Formal Languages

▪ Def: Let �  be a set of character (alphabet). A language over � is a set 
of strings of characters drawn from � .
▪ Regular languages is a formal language

▪ Alphabet = English character, Language = English Language
▪ Is it formal language?

▪ Alphabet = ASCII, Language = C Language

𝛴 𝛴 
𝛴



Formal Language

‘c’ = {“c”}
�  = {“”}
A + B = {a | a �  A} �  {b | b �  B} 
AB = {ab | a �  A ^  b �  B} 
A* =  �

𝜀
𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

Ai

expression
Set



Formal Language

L(‘c’) = {“c”}
L �  = {“”}
L(A + B) = {a | a �  L(A)} �  {b | b �  L(B)} 
L(AB) = {ab | a �  L(A) ^  b �  L(B)} 
L(A*) = �

(𝜀)
𝜖 ∪ 𝜖

𝜖 𝜖

⋃
i>=0

L(Ai)
expression

Set

L: Expressions -> Set of strings
• Meaning function L maps syntax to semantics
• Mapping is many to one
• Never one to many



Lexical Specifications

▪ Keywords: “if” or “else” or “then” or “for” ….
▪ Regular expression  = ‘i’ ‘f’ + ‘e’ ‘l’ ‘s’ ‘e’

          = ‘if’ + ‘else’ + ‘then’

▪ Numbers: a non-empty string of digits
▪ digit = ‘1’+’0’+’2’+’3’+’4’+’5’+’6’+’7’+’8’+’9’
▪ digit*
▪ How to enforce non-empty string?

▪ digit digit* = digit+



Lexical Specifications

▪ Identifier: strings of letters or digits, starting with a letter
▪ letter = ‘a’ + ‘b’ + ‘c’ + …. + ‘z’ + ‘A’ + ‘B’ + …. + ‘Z’

= [a-zA-Z]
▪ letter (letter + digit)*

▪ Whitespace: a non-empty sequence of blanks, newline, and tabs
▪ (‘ ’ + ‘\n’ + ‘\t’)+



PASCAL Lexical Specification

▪ digit = ‘0’+‘1’+‘2’+‘3’+‘4’+‘5’+‘6’+‘7’+‘8’+‘9’

▪ digits = digit+

▪ opt_fraction = (‘.’ digits) + �  = (‘.’ digits)?

▪ opt_exponent = (‘E’ (‘+’ + ‘-’ + � ) digits ) + �

               = (‘E’ (‘+’ + ‘-’)? digits )?

▪ num = digits opt_fraction opt_exponent 

𝜀
𝜀 𝜀



Common Regular Expression

▪ At least one A+  AA*

▪ Union: A | B �  A + B

▪ Option:  A? �  A + �

▪ Range: ‘a’ + … + ‘z’ = [a-z]

▪ Excluded range: complement of [a-z] �  [^a-z]

≡

≡
≡ 𝜀

≡



Summary of Regular Languages

▪ Regular Expressions specify regular languages

▪ Five constructs

▪ Two base expression

▪ Empty and 1-character string

▪ Three compound expressions

▪ Union, Concatenation, Iteration



Lexical Specification of a language

1. Write a regex for the lexemes of each token class
▪ Number = digit+
▪ Keywords = ‘if’ + ‘else’ + ..
▪ Identifiers = letter (letter + digit)*
▪ LPAR = ‘(‘



Lexical Specification of a language

2. Construct R, matching all lexemes for all tokens

  R = Number + Keywords + Identifiers + …

    = R1 + R2 + R3 + …

3. Let input be xq…xn.

   For 1  i  n, check x1…xi  L(R)

4. If successful, then we know that 

    x1…xi  L(Rj) for some j

5. Remove x1…xi from input and go to step 3. 

≤ ≤ 𝜖

𝜖



Lexical Specification of a language

▪ How much input is used?
▪ x1…xi  L(R)
▪ x1…xj  L(R), i 
▪ Which one do we want? (e.g., == or =)
▪ Maximal munch: always choose the longer one

▪ Which token is used if more than one matches?
▪ x1…xi  L(R) where R = R1 + R2 + .. + Rn

▪ x1…xi  L(Rm)
▪ x1…xi  L(Rn), m 
▪ Eg: Keywords = ‘if’, Identifier = letter (letter + digit)*, if matches both
▪ Keyword has higher priority
▪ Rule of Thumb: Choose the one listed first

𝜖
𝜖 ≠ 𝑗

𝜖
𝜖
𝜖 ≠ 𝑛



Lexical Specification of a language

▪ What if no rule matches?
▪ x1…xi  L(R) … compiler typically tries to avoid this scenario
▪ Error = [all strings not in the lexical spec]
▪ Put it in last in priority

∉



Summary so far

▪ Regular Expressions are concise notations for the string patterns

▪ Use in lexical analysis with some extensions
▪ To resolve ambiguities
▪ To handle errors

▪ Implementation?
▪ We will study next



Finite Automata

▪ Regular Expression = specification

▪ Finite Automata = implementation

▪ A finite automaton consists of 
▪ An input Alphabet:  �
▪ A finite set of states: S

▪ A start state: n

▪ A set of accepting states: F �  S

▪ A set of transitions state: state1 �  state2

Σ

⊆

𝑖𝑛𝑝𝑢𝑡  

a



Transition

▪ s1 �  s2 (state s1 on input a goes to state s2)

▪ If end of the input and in final state, the input is accepted

▪ Otherwise reject

▪ Language of FA = set of strings accepted by that FA

𝑎  



Example Automata

▪ a finite automaton that accepts only “1”



Example Automata

▪ A finite automaton that accepting any number of  “1” followed by “0”



Regular Expression to NFA

▪ For �   (it’s a choice)

▪ For input a   

𝜀
𝜀

𝑎



Finite Automata

▪ Deterministic Finite Automata (DFA)

▪ One transition per input per state

▪ No � -moves

▪ Takes only one path through the state graph

▪ Nondeterministic Finite Automata (NFA)

▪ Can have multiple transitions for one input in a given state

▪ Can have � -moves

▪ Can choose which path to take

▪ An NFA accepts if some of these paths lead to accepting state at the end of input. 

ε

ε



Finite Automata

▪ An NFA can get into multiple states

▪ Input:     1           0                  0

▪ Output: {A}.     {A,B}            {A,B,C}

A B C
00

0

1



NFA vs. DFA

▪ NFAs and DFAs recognize the same set of regular languages

▪ DFAs are faster to execute

▪ No choices to consider

▪ NFAs are, in general, small



Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Finite Automata

▪ For each kind of regex, define an equivalent NFA
▪ Notation: NFA for regex M

M



Regular Expression to NFA

▪ For �  

▪ For input a   

𝜀
𝜀

𝑎



Regular Expression to NFA

▪ For AB

▪ For A + B

A B
𝜀

A

B

𝜀

𝜀

𝜀

𝜀



Regular Expression to NFA

▪ For A*

A 𝜀
𝜀

𝜀

𝜀



Example

▪ (q+p)*q

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p

𝜀



Example

Choose the NFA that accepts the regular expression: 1* + 0.




NFA to DFA

Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



! -closure𝜀

▪ � -closure of a state is all the state I can reach following �𝜀 𝜀 move .

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p � -closure(B) = {B,C,D}𝜀



! -closure𝜀

▪ � -closure of a state is all the state I can reach following �𝜀 𝜀 move .

JIHG

FD

EC

BA

𝜀

𝜀
𝜀

𝜀

𝜀

𝜀

𝜀

𝜀

𝜀
q

q

p � -closure(B) = {B,C,D}
� -closure(G) = {A,B,C,D,G,H,I}
𝜀
𝜀



NFA

▪ An NFA can be in many states at any time

▪ How many different states?
▪ If NFA has N states, it reaches some subset of those states, say S
▪ |S| �
▪ There are 2N – 1 possible subsets (finite number)

≤   𝑁



NFA to DFA

NFA
▪ States S

▪ Start s 

▪ Final state F

▪ Transition state

▪ a(X) = {y | x �  X �  x � )

▪ �

∈ ⋀
𝑎  𝑦

𝜀 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

DFA

▪ States will be all possible subset of S 
except empty set

▪ Start state = � (s)

▪ Final state �

▪ X �  if 
▪ Y = �

𝜀 − 𝑐𝑙𝑜𝑠𝑢𝑟𝑒

{X   𝑋  ∩ 𝐹 =  ∅}
𝑎  𝑌 

ε − closure(a(X))



NFA to DFA
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q
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NFA to DFA
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FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀
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𝜀
q

q

p

ABCDHI



NFA to DFA
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NFA to DFA
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NFA to DFA

JIHG
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NFA to DFA

JIHG
FD

EC

BA

𝜀
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𝜀

𝜀
𝜀

𝜀𝜀

𝜀

𝜀
q

q
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q
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Example: NFA to DFA

B HA

I J

C D E F G
�ε �ε �ε

�ε �ε

�ε
�ε

�ε

�ε

0

01



Example: NFA to DFA

B HA

I J

C D E F G
�ε �ε �ε

�ε �ε

�ε
�ε

�ε

�ε

1

1

0

0

0

01



NFA to DFA

Lexical Specification

Regular Expressions

NFA DFA

Table driven implementation of 
automata



Implementing DFA

▪ A DFA can be implemented by a 2D table T
▪ One dimension is states
▪ Another dimension is input symbol
▪ For every transition si ->a sk: define T[i,a] = k



Implementing DFA

S

T
p

Uq

qp

q

p

p q
S T U
T T U
U T U

i = p;
state = 0;
while(input[i]) {

  state = A[state,input[i]];
  i++; 
}

Table A



Implementing DFA

p q
S T U
T T U
U T U

Table A

A lot of duplicate entries

S

T
U

Table B

p q
T U

Compact but need an extra indirection
- Inner loop will be slower



Implementing DFA

p q
A {B,H}
B {C,D}
C {E}
…

JIHG
FD

EC
BA

𝜀

𝜀
𝜀

𝜀
𝜀

𝜀
𝜀

𝜀

𝜀
q

q

p

Deal with set of states rather than single state-! inner loop is complicated



Deterministic Finite Automata: Example

{ 
type token = ELSE | ELSEIF 

}

rule token = 
parse "else"{ ELSE } 

| "elseif"{ ELSEIF } 

e l s e i f



Deterministic Finite Automata
{ type token = IF | ID of string | NUM of string } 

rule token = 
parse "if"{ IF } 

| [’a’-’z’] [’a’-’z’ ’0’-’9’] as lit { ID(lit) } 
| [’0’-’9’]+ as num { NUM(num) }

NUM

ID IF

ID

0–9

i

a–hj–z

  f 

a–z0–9

a–eg–z0–9

0–9

a–z0–9


