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The Compiler So Far 

▪ Lexical analysis 
▪ Detects inputs with illegal tokens 

▪ Parsing 
▪ Detects inputs with ill-formed parse trees 

▪ Semantic analysis  
▪ Last “front end” phase 
▪ Catches all remaining errors 



What’s Wrong With This?

a + f(b, c)
Is a defined?  

Is f defined? 

Are b and c defined? 

Is f a function of two arguments? 

Can you add whatever a is to whatever f returns? 

Does f accept whatever b and c are? 

Scope questions Type questions
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Scope

▪ The scope of an identifier is the portion of 
a program in which that identifier is 
accessible.

▪ The same identifier may refer to different 
things in different parts of the program.
▪ Different scopes for same name don’t overlap. 

▪ An identifier may have restricted scope.

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4



Static Vs. Dynamic Scoping

▪ Most modern languages have static scope 
▪ Scope depends only on the program text, not runtime behavior 
▪ Most modern languages use static scoping. Easier to understand, harder to break 

programs.

▪ A few languages are dynamically scoped 
▪ Scope depends on execution of the program 
▪ Lisp, SNOBOL (Lisp has changed to mostly static scoping)
▪ Advantage of dynamic scoping: ability to change  environment.
▪ A way to surreptitiously pass additional parameters.



Basic Static Scope in C, C++, Java, etc.

A name begins life where it is  declared 
and ends at the end  of its block.

From the CLRM, “The scope  of an 
identifier declared at  the head of a 
block begins at  the end of its 
declarator, and  persists to the end of 
the  block.”

void foo()
{

int x;

}



Hiding a Definition

Nested scopes can hide earlier  
definitions, giving a hole.

From the CLRM, “ I f  an  identifier is 
explicitly declared  at the head of a 
block,  including the block  
constituting a function, any  
declaration of the identifier  outside 
the block is  suspended until the end 
of  the block.”

void foo()
{

int x;

while ( a < 10 ) {
int x;

}

}



Dynamic Definitions in TEX

% \x, \y undefined
{

% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\ f i  

% \x defined, \y may be undefined
}
% \x, \y undefined



Open vs. Closed Scopes

▪An open scope begins life including the symbols in its outer  scope. 

▪Example: blocks in Java 

{ 
i n t  x; 
for (;;) { 

/* x visible here */ 
} 

} 

▪A closed scope begins life devoid of symbols.  Example: structures in C. 

s truct  foo  {  i n t  x;  f l o a t  y ; }



Symbol Tables 

▪ A symbol table is a data structure that tracks the current bindings of identifiers 
▪ Can be implemented as a stack 
▪ Operations 

▪ add_symbol(x) push x and associated info, such as x’s type, on the stack 
▪ find_symbol(x) search stack, starting from top, for x. Return first x found or NULL if 

none found 
▪ remove_symbol() pop the stack when out of scope

▪ Limitation:
▪ What if two identical objects are defined in the same scope multiple times.
▪ Eg: foo(int x, int x)



Advanced Symbol Table

▪ enter_scope() start a new nested scope 

▪ find_symbol(x) finds current x (or null) 

▪ add_symbol(x) add a symbol x to the table 

▪ check_scope(x) true if x defined in current scope 

▪ exit_scope() exit current scope



Types

▪ What is a type? 
▪ A set of values 
▪ A set of operations defined on those values 
▪ However,  the notion may vary from language to language

▪ Classes are one instantiation of the modern notion of type 



Why Do We Need Type Systems? 

▪ Consider the assembly language fragment 
add $r1, $r2, $r3 

▪What are the types of $r1, $r2, $r3? 

▪ Certain operations are legal for values of each type 
▪ It doesn’t make sense to add a function pointer and an integer in C 
▪ It does make sense to add two integers
▪ But both have the same assembly language implementation! 



Type Systems

▪ A language’s type system specifies which operations are valid for which types 

▪ The goal of type checking is to ensure that operations are used with the correct types 
▪ Enforces intended interpretation of values, because nothing else will! 

▪ Three kinds of languages: 
▪ Statically typed: All or almost all checking of types is done as part of compilation (C, Java) 
▪ Dynamically typed: Almost all checking of types is done as part of program execution 

(Python) 
▪ Untyped: No type checking (machine code) 



Static vs. Dynamic Typing

▪ Static typing proponents say: 
▪ Static checking catches many programming errors at compile time 
▪ Avoids overhead of runtime type checks 

▪ Dynamic typing proponents say: 
▪ Static type systems are restrictive 
▪ Rapid prototyping difficult within a static type system 

▪ In practice 
▪ code written in statically typed languages usually has an escape mechanism • 

▪ Unsafe casts in C, Java 
▪ Some dynamically typed languages support “pragmas” or “advice” • i.e., type declarations.



Type Checking and Type Inference 

▪ Type Checking is the process of verifying fully typed programs 

▪ Type Inference is the process of filling in missing type information 

▪ The two are different, but the terms are often used interchangeably

▪ Rules of Inference 
▪ We have seen two examples of formal notation specifying parts of a compiler : Regular 

expressions, Context-free grammars 
▪ The appropriate formalism for type checking is logical rules of inference 



Why Rules of Inference? 

▪ Inference rules have the form If Hypothesis is true, then Conclusion is true 

▪ Type checking computes via reasoning

 If E1 and E2 have certain types, then E3 has a certain type 

▪ Rules of inference are a compact notation for “If-Then” statements 



From English to an Inference Rule 

▪ The notation is easy to read with practice 

▪ Start with a simplified system and gradually add features 

▪ Building blocks 
▪ Symbol ∧ is “and” 
▪ Symbol ⇒ is “if-then”

▪ x:T is “x has type T”

▪ If e1 has type Int and e2 has type Int, then e1 + e2 has type Int
▪ (e1 has type Int ∧ e2 has type Int) ⇒ e1 + e2 has type Int 

▪ (e1: Int ∧ e2: Int) ⇒ e1 + e2: Int 

▪ It is a special case of Hypothesis1 ∧ . . . ∧ Hypothesisn ⇒ Conclusion (This is an inference 

rule). 



Notation for Inference Rules 

▪ By tradition inference rules are written

 

e:T  means “it is provable that e is of type T

⊢  Hypothesis … ⊢  Hypothesis
⊢  Conclusion

⊢  



Two Rules

   [Int]

   [Add]

   [Not]

▪ These rules give templates describing how to type integers and + expressions 

▪ By filling in the templates, we can produce complete typings for expressions

▪ Example: 1 + 2?

⊢  i is 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑙𝑖𝑡𝑒𝑟𝑎𝑙
⊢  i: Int

⊢  e1: Int        ⊢  e2: Int
⊢  e1+e2: Int

⊢  e: Boo𝑙
⊢ !𝑒:𝐵𝑜𝑜𝑙



Type Checking Proofs 

▪ Type checking proves facts e: T 
▪ Proof is on the structure of the AST 
▪ Proof has the shape of the AST 
▪ One type rule is used for each AST node 

▪ In the type rule used for a node e: 
▪ Hypotheses are the proofs of types of e’ s sub-expressions 
▪ Conclusion is the type of e 

▪ Types are computed in a bottom-up pass over the AST 



A Problem 

▪ What is the type of a variable reference? 

▪

▪ The local, structural rule does not carry enough information to give x a type. 

𝑥 𝑖𝑠 𝑎 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
⊢ 𝑥: ?



A solution

▪ Put more information in the rules! 

▪ A type environment gives types for free variables 
▪ A type environment is a function from ObjectIdentifiers to Types 
▪ A variable is free in an expression if it is not defined within the expression

▪ Type Environments
▪ Let O be a function from ObjectIdentifiers to Types 
  The sentence O e: T 
is read: Under the assumption that free variables have the types given by O, it is provable that 
the expression e has the type T

▪

⊢  

𝑂(𝑥) = 𝑇
⊢ 𝑥:𝑇



Implementing Type Checking

TypeCheck(Environment, e1 + e2) = { 
T1 = TypeCheck(Environment, e1); 
T2 = TypeCheck(Environment, e2); 
Check T1 == T2 == Int; 
return Int; }

𝑂, 𝑀, 𝐶 ⊢ 𝑒1:𝐼𝑛𝑡   𝑂, 𝑀, 𝐶 ⊢ 𝑒2:𝐼𝑛𝑡
𝑂, 𝑀, 𝐶 ⊢ 𝑒1 + 𝑒2:𝐼𝑛𝑡



Binding Time

When are bindings created and destroyed?



Binding Time

When a name is connected to an  object. 

Bound when Examples

language designed  
language implemented  
Program written  
compiled 
linked  
loaded  
run

if else  datatype  
widths  foo bar
static addresses, code  
relative addresses  shared 
objects 
heap-allocated objects



Binding Time and Efficiency
Earlier binding time ⇒  more efficiency, less flexibility 

Compiled code more efficient than interpreted because  
most decisions about what to execute made beforehand. 
switch (s ta tement) {

case add:
r  = a + b;
break;

add %o1, %o2, %o3
case sub:

r  = a - b;
break;

/* ... */
}



Binding Time and Efficiency

Dynamic method dispatch in OO languages: 

c lass  Box : Shape {
p u b l i c  void  draw() { ... }

}

c lass  C i r c l e  : Shape {
p u b l i c  void  draw() { ... }

}

Shape s;

s.draw(); /* Bound at run time */



Static Semantic Analysis

How do we validate names, scope, and   types?



Static Semantic Analysis

Lexical analysis: Each token is valid?

i f  i  3 "This"  
#a1123

/* valid Java tokens */

/* not a token */

Syntactic analysis: Tokens appear in the correct order? 

f o r  ( i  = 1 ; i  < 5 ; i++ ) 3 + "foo"; /* valid Java syntax */

f o r  break /* invalid syntax */

Semantic analysis: Names used correctly? Types consistent?
i n t  v   = 42 + 13;
r e t u r n   f  + f(3);

/* valid in Java (if v is new) */

/* invalid */



Examples from Java: 

Verify names are defined and are of the right type. 

i n t  i  = 5;

i n t  a  = z; /* Error: cannot find symbol */

i n t  b = i[3]; /* Error: array required, but int found */

Verify the type of each expression is consistent. 

i n t  j  = i  + 53;

i n t  k   = 3 + "hello"; /* Error: incompatible types */  

i n t  l  = k(42); /* Error: k is not a method */  

i f  ("Hello") r e t u r n  5; /* Error: incompatible types */  
S t r i n g  s  = "Hello";

i n t  m         = s; /* Error: incompatible types */

What To Check



How To Check Expressions: Depth-first AST Walk

Checking function: environment →  node →  type

1 - 5

-

1 5

check(− )
check(1) = int  
check(5) = int 
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+) 
check(1) = int  
check("Hello") = string 
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true  
about the nodes below it? What is the type of the node?



How To Check: Symbols
Checking function: environment →  node →  type 

1 + a 

+

1 a

check(+) 
check(1) = int  
check(a) = int  Success: 
int + int = int 

The key operation: determining the type of a symbol when  
it is encountered. 

The environment provides a “symbol table” that holds  
information about each in-scope symbol.



A Static Semantic Checking Function

A big function: “check: ast →  sast”
Converts a raw AST to a “semantically checked AST”
Names and types resolved

AST
type expression = 

 IntConst  of int
      | Id of string
      | Call of string * expression list
      | ...

SAST 
type expr_detail =

IntConst  of int
     | Id of variable_decl
     | Call of function_decl * expression list
     | ...type expression = expr_detail * Type.t


