Programming Languages & Translators

CODE GENERATION

Baishakhi Ray

Fall 2019

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) m

Stack Machine

= A simple evaluation model
= No variables or registers

= A stack of values for intermediate results

= Each instruction:

Takes its operands from the top of the stack
Removes those operands from the stack
Computes the required operation on them
Pushes the result on the stack

Example of Stack Machine Operation

= The addition operation on a stack machine

5

+

I 12
9
7

pop add push

Example of a Stack Machine Program

= Consider two instructions
= push i - place the integer i on top of the stack
= add - pop two elements, add them and put the result back on the stack

= A program to compute 7 + 5:
push 7
push 5
add

Why Use a Stack Machine?

= Each operation takes operands from the same place and puts results in the same
place

= This means a uniform compilation scheme

= And therefore a simpler compiler

Why Use a Stack Machine?

Location of the operands is implicit
= Always on the top of the stack

No need to specify operands explicitly

No need to specify the location of the result

Instruction “add” as opposed to “add r1, r2”
= Smaller encoding of instructions

= More compact programs

This is one reason why Java Bytecodes use a stack evaluation model

Optimizing the Stack Machine

= The add instruction does 3 memory operations
= Two reads and one write to the stack
= The top of the stack is frequently accessed

= |dea: keep the top of the stack in a register (called accumulator)
= Register accesses are faster

= The “add” instruction is now
acc < acc + top_of_stack
= Only one memory operation!

Stack Machine with Accumulator

= [nvariants
= The result of an expression is in the accumulator

« Forop(e,,...,e,) push the accumulator on the stack after computing e;,...,e, ;
= After the operation pops n-1 values

= Expression evaluation preserves the stack

Stack Machine with Accumulator. Example

= Compute 7 + 5 using an accumulator
1. acc « 7; push acc
acc < 5

2
3. acc « acc + top_of_stack
4

pPop

A Bigger Example: 3 + (7 + 5)

Code ACC Stack
acc + 3 3 <init>
push acc 3 3,<init>
acc « 7 7 3,<init>
push 7 7, 3,<init>
acc < 5 5 7, 3,<init>
acc < acc + top_of_stack 12 7, 3,<init>
pop 12 3,<init>
acc + acc + top_of_stack 15 3,<init>
pop 15 <init>

It is very important evaluation of a subexpression preserves the stack
« Stack before the evaluation of 7 + 5is 3

« Stack after the evaluation of 7 + 5is 3

* The first operand is on top of the stack

From Stack Machines to MIPS

= The compiler generates code for a stack machine with accumulator

= Let’s run the resulting code on a MIPS like processor.
= Simulate stack machine instructions using MIPS instructions and registers

= The accumulator is kept in MIPS register $a0

= The stack is kept in memory
= The stack grows towards lower addresses

= The address of the next location on the stack is kept in MIPS register $sp
= The top of the stack is at address $sp + 4

MIPS Assembly

= MIPS architecture
= Prototypical Reduced Instruction Set Computer (RISC) architecture

= Arithmetic operations use registers for operands and results
= Must use load and store instructions to use operands and results in memory

= 32 general purpose registers (32 bits each)

= We will use $sp, $a0 and $t1 (a temporary register)

A Sample of MIPS Instructions

lw reg1 offset(reg2)
= Load 32-bit word from address reg2 + offset into reg1

add reg1 reg2 reg3
= reg1 < reg2 + reg3

sw reg1 offset(reg2)
» Store 32-bit word in reg1 at address reg2 + offset

addiu reg1 reg2 imm
= regl < reg2 + imm * “u” means overflow is not checked

li reg imm
= reg < imm

MIPS Assembly, Example

= The stack-machine code for 7 + 5 in MIPS:

Steps MIPS Instruction

acc = 7 1i Sa0 7

push acc sw $Sa0 0(Ssp)
addiu Ssp S$sp -4

acc < 5 1li Sa0 5

acc + acc + top of stack lw $tl1 4($sp)

add Sa0 Sa0 St1l

pop addiu Ssp S$sp 4

= Let’s generalize this to a simple language

A Small Language

A language with integers and integer operations
P>D; P|D
D » def id(ARGS) = E;
ARGS » id, ARGS | id
E » int | id | if E; = E, then E; else E,
| E, + E, | E, — E, | id(E;,-,E))

The first function definition f is the “main” routine
Running the program on input i means computing f(i)
Program for computing the Fibonacci numbers:

def fib(x) = if x = 1 then 0 else
if x = 2 then 1 else
fib(x - 1) + fib(x — 2)

Code Generation Strategy

= For each expression e we generate MIPS code that:
= Computes the value of e in $a0
= Preserves $sp and the contents of the stack -

= We define a code generation function cgen(e) whose result is the code generated for e
= The code to evaluate a constant simply copies it into the accumulator:

cgen(i) =i $a0 i
= This preserves the stack, as required

= Color key:
= RED: compile time
= BLUE: run time

Code Generation for Add

cgen(el + e2) = cgen(el + e2) =
cgen(el) cgen(el)
sw Sa0 0(Ssp) print “sw $Sal0 0(Ssp)”
addiu $sp S$sp -4 print “addiu Ssp $sp -4"
cgen(e2) cgen(e2)
lw Stl1 4(Ssp) print ”"lw Stl 4(Ssp)”
add Sal0 $tl Sa0 print “add $al0 S$tl Sa0”

addiu S$sp S$sp 4 print “addiu S$sp S$sp 4"

Code Generation for Add. Wrong!

= Optimization: Put the result of e, directly in $t17?
cgen(el + e2) =
cgen(el)
move $tl $a0
cgen(e2)
add sal0 $tl1 sal

= Try to generate code for : 3 + (7 + 5)

Code Generation Notes

= The code for + is a template with “holes” for code for evaluating e, and e,

= Stack machine code generation is recursive
« Code for e, + e, is code for e, and e, glued together

= Code generation can be written as a recursive descent of the AST
= At least for expressions

Code Generation for Sub and Constants

» New instruction: sub regl reg2 reg3
Implements regl < reg2 - reg3
cgen(el - e2) =cgen(el)
sw Sal0 0(Ssp)
addiu S$Ssp S$sp -4
cgen(e2)
lw Stl1 4 (Ssp)
sub $al0 $tl $aol
addiu S$Ssp S$sp 4

Code Generation for Conditional

= We need flow control instructions

= New instruction: beq reg1 reg2 label
= Branch to label if reg1 = reg2

= New instruction: b label
= Unconditional jump to label

Code Generation for If (Cont.)

cgen(if el = e2 then e3 else e4) =
cgen(el)
sw $a0 0(Ssp)
addiu S$Ssp S$sp -4
cgen(e2)
lw Stl 4(Ssp)
addiu Ssp Ssp 4
beqg $a0 $tl true branch

false branch:
cgen(e4d)
b end if
true branch:
cgen(e3)
end if:

The Activation Record

= Code for function calls and function definitions depends on the layout of the AR

= A very simple AR suffices for this language:
= The result is always in the accumulator
= No need to store the result in the AR
= The activation record holds actual parameters
= Forf(x,,...,X,) push Xx,,...,Xx, on the stack

= These are the only variables in this language

The Activation Record (Cont.)

= The stack discipline guarantees that on function exit $sp is the same as it was on
function entry

= No need for a control link

= We need the return address

= A pointer to the current activation is useful
= This pointer lives in register $fp (frame pointer)
= Reason for frame pointer will be clear shortly

The Activation Record

= Summary: For this language, an AR with the caller’s frame pointer, the actual
parameters, and the return address suffices

= Picture: Consider a call to f(x,y), the AR is:

FP

old fp

y }ARoff
X

SP

Code Generation for Function Call

= The calling sequence is the instructions (of both caller and callee) to set up a function
invocation

= New instruction: jal label
= Jump to label, save address of next instruction in $ra
= On other architectures the return address is stored on the stack by the “call” instruction

Code Generation for Function Call (Cont.)

cgen(f(el,..,en)) = = The caller saves its value of the frame
sw $fp 0(S$sp) pointer
addiu $sp $sp -4 = Then it saves the actual parameters in
cgen(e,) reverse order
sw $a0 0(3sp) = The caller saves the return address in

addiu $sp $sp -4 register $ra

= The AR so far is 4"n+4 bytes long
cgen(e,)
sw Sal0 0(Ssp)
addiu S$sp S$sp -4

jal £ entry

Code Generation for Function Definition

= New instruction: jr reg
= Jump to address in register reg

cgen(def f(x1l,..,Xn) = e) = Note: The frame pointer points to the top,
move S$fp S$Ssp not bottom of the frame
sw $Sra 0(S$sp)
addiu $sp $sp -4 The callee pops the return address, the actual |
cgen(e) arguments and the saved value of the frame pointer.

lw Sra 4(Ssp)
addiu Ssp Ssp z
lw Sfp 0(S$sp)
jr Sra

Z=4"n + 8

Calling Sequence: Example for f(x,y)

Before call On entry Before exit After call
FP FP FP)
SP old fp oldfp | SP
Y Y
X X
SP FP| return

SP

Code Generation for Variables

= Variable references are the last construct

= The “variables” of a function are just its parameters
= They are all in the AR
= Pushed by the caller

= Problem: Because the stack grows when intermediate results are saved, the variables
are not at a fixed offset from $sp

Code Generation for Variables (Cont.)

= Solution: use a frame pointer
= Always points to the return address on the stack
= Since it does not move it can be used to find the variables

= Let x; be the ith (i = 1,...,n) formal parameter of the function for which code is being
generated

cgen(x,) = lw $a0 z($fp) (z =4%)

Code Generation for Variables (Cont.)

» Example: For a function def f(x,y) = e the activation and frame pointer are set up as
follows:

old fp
« Xisatfp+4
Y . Yisatfp+8
X
FP | return

SP

Summary

= The activation record must be designed together with the code generator.
= Code generation can be done by recursive traversal of the AST.

= Production compilers do different things

= Emphasis is on keeping values (esp. current stack frame) in registers
= Intermediate results are laid out in the AR, not pushed and popped from the stack

An Improvement

ldea: Keep temporaries in the AR

The code generator must assign a location in the AR for each temporary

def fib(x) = 1f x = 1 then 0 else
if x = 2 then 1 else
fib(x - 1) + fib(x — 2)

What intermediate values are placed on the stack?

How many slots are needed in the AR to hold these values?

How Many Temporariesr

» Let NT(e) = # of temps needed to evaluate e

= NT(el1 + e2)
= Needs at least as many temporaries as NT(e1)
= Needs at least as many temporaries as NT(e2) + 1

= Space used for temporaries in e, can be reused for temporaries in e,

The Equations

NT (el + e2) = max(NT(
NT (el - e2) = max(NT(
NT(if el = e2 then e3 else e4) = m
T(e4d)
NT(id(el,..,en) = max(NT(
NT(int) 0
NT(id) = 0

el), 1 + NT(e2))
el), 1 + NT(e2))
ax(NT(el),l + NT(e2), NT(e3),
)
NT

el),..,NT(en))

Is this bottom-up or top-down?

What is NT(...code for fib...)?

The Revised AR

« For a function definition f(x,,...,x,) = e the AR has 2 + n + NT(e) elements

= Return address

= Frame pointer Old FP

= n arguments
xl’l

= NT(e) locations for intermediate results

X1

Return Addr.

Temp NT(e)

Temp 1

Revised Code Generation

= Code generation must know how many temporaries are in use at each point

= Add a new argument to code generation: the position of the next available temporary

Code Generation for +

= Original = Revised

cgen(el + e2) = cgen(el + e2, nt) =
cgen(el) cgen(el, nt)
sw $Sal0 0(Ssp) sw $al0 nt(S$fp)
addiu $sp Ssp -4 cgen(e2, nt + 4)
cgen(e2) lw $tl1 nt(S$fp)
lw Stl1 4 (Ssp) add $al0 S$tl Sao0

add $a0 $tl1 $Sa0
addiu Ssp S$sp 4

The temporary area is used like a small,
fixed size stack

CODE GENERATION FOR OO
LANGUAGES

Object Layout

= OO implementation = Stuff from last part + more stuff

= OO Slogan: If B is a subclass of A, than an object of class B can be used wherever an
object of class A is expected

= This means that code in class A works unmodified for an object of class B

= Two issues
= How are objects represented in memory?
= How is dynamic dispatch implemented?

Object Layout Example

Class A { Class C inherits A {
a: Int <- 0; c: Int <- 3;
d: Int <- 1; h(): Int { a <- a * c };
f(): Int { a <- a + d }; }s

}i

Class B inherits A {

b: Int <- 2;

f(): Int { a };

g(): Int { a <- a - b };
}i

Object Layout (Cont.)

= Attributes a and d are inherited by classes B and C

= All methods in all classes refer to a

= For A methods to work correctly in A, B, and C objects, attribute a must be in the same
“place” in each object.

= An object is like a struct in C. The reference foo.field is an index into a foo struct at an
offset corresponding to field

Subclasses

Observation: Given a layout for class A, a layout for subclass B can be defined by
extending the layout of A with additional slots for the additional attributes of B

Leaves the layout of A unchanged (B is an extension)

Layout Picture

Offset |0 12 |16 |20
Class
A Atag a d

B Btag a d b
C Ctag a d c

Dynamic Dispatch

= Consider the following dispatches (using the same example)

= e.g()

= greferstomethodinBifeisaB

- e.f()

= frefersto method in Aif fis an A or C (inherited in the case of C)
= frefers to method in B for a B object

= The implementation of methods and dynamic dispatch strongly resembles the
implementation of attributes

Dispatch Tables

= Every class has a fixed set of methods (including inherited methods)

= A dispatch table indexes these methods
= An array of method entry points
= A method f lives at a fixed offset in the dispatch table for a class and all of its subclasses

Dispatch Table Example

Offset Class |0

A fA
B fB
C fA

= The dispatch table for class A has only 1
method

= The tables for B and C extend the table
for A to the right

= Because methods can be overridden, the
method for f is not the same in every
class, but is always at the same offset

Using Dispatch Tables

= The dispatch pointer in an object of class X points to the dispatch table for class X

= Every method f of class X is assigned an offset Of in the dispatch table at compile time

= To implement a dynamic dispatch e.f() we
= Evaluate e, giving an object x
« Call D[O]
= D is the dispatch table for x
= |n the call, self is bound to x

