
COMS W4115: Programming Assignment 2
Abstract Syntax Tree

Logistics
1. Announcement Date: September 16th, 2019

2. Due Date: October 7th, 2019 by 5:00pm. No extension!!

3. Total Points: 100

Abstract Syntax Tree
1. Dump AST of bubble.c attached

(a) Run the following command to generate AST for bubble.c

./build/bin/clang -cc1 -ast-dump bubble.c -I /usr/include
-I ./build/lib/clang/10.0.0/include

Note: In case of "’bits/libc-header-start.h’ file not found" error, install
the following package.

sudo apt-get install gcc-multilib

(b) Identify the AST section for bubbleSort function and put them into
{UNI}.txt.

2. Visualize AST of bubble.c attached

(a) Run the following command to generate AST in dots file for bubble.c.
One dot file will be generated for each function in /tmp.

./build/bin/clang -cc1 -ast-view bubble.c -I /usr/include
-I ./build/lib/clang/10.0.0/include

(b) Identify the AST dot file for bubbleSort function and run the following
command to generate graph from the dot file and submit the graph file
{UNI}.pdf.

dot -Tpdf /tmp/AST.dot -o {UNI}.pdf

3. Generate AST graph for bubbleSort function in more detail
The AST graph generated in the second task shows only the type of each AST
node while the -ast-dump in the first task generates more detail information
including values and locations.

You should write a Python3 script {UNI}.py, which takes {UNI}.txt from
the first task as input and outputs a dot file. We will run your script as
follows,

1



python3 {UNI}.py {UNI}.txt > {UNI}.dot
dot -Tpdf {UNI}.dot -o ast.pdf

We will look at the ast.pdf to grade. The graph should at least show detail
information for Operator nodes, DeclRefExpr nodes and IntegerLiteral nodes.
10 points for each of the three types. Please don’t output location information.
Here is an example graph, which includes more detail information for the
following C program.

int main(){
for(int i = 0; i < 10; i++){

bar();
}
return 1;

}

FunctionDecl

CompoundStmt

ForStmt ReturnStmt

DeclStmt BinaryOperator,< UnaryOperator,++ CompoundStmt

VarDecl

IntegerLiteral,0

ImplicitCastExpr IntegerLiteral,10

DeclRefExpr,i

DeclRefExpr,i CallExpr

ImplicitCastExpr

DeclRefExpr,bar

IntegerLiteral,1

4. Write a simple tool based on Clang LibTooling to print the information of all
if statements in a C program by using RecursiveASTVisitor.

(a) Create a new folder "clang-hw2" inside folder "llvm-project/clang/tools/"
and put the provided CMakeLists.txt and FindClassDecls.cpp in the new
folder. Edit "llvm-project/clang/tools/CMakeLists.txt" and add the fol-
lowing content into the file.

add_clang_subdirectory(clang-hw2)

Return to the "llvm-project/build" folder and run "make". After it fin-
ishes, you can test the example tool by running the following command.

2



./bin/clang-hw2 anycppfile.cpp --

It will output the location of all the class declaration in a C++ program.
Read the source code and the following Clang website for detail expla-
nation of this example.
https://clang.llvm.org/docs/RAVFrontendAction.html

(b) Now that we know how to create a tool based on Clang LibTooling, you
are required to create another Clang LibTooling tool to identify all the if
statements in a C program and output the information in the following
format.

If we run:
./bin/clang-hw2 bubble.c --
It should output:
Found IfStmt at 20:7 with Condition: arr[j] > arr[j+1]

Rename your C++ file to {UNI}.cpp and submit it. We may run
your tool on other C programs, all if statements should be identified and
outputted for full grade.

Submission Guide
Submit an extra file contribution.txt to describe each of your contribution if you
work with a partner.

For this assignment, you need to submit four files: {UNI}.txt(10 points),
{UNI}.pdf (10 points), {UNI}.py(30 points) and {UNI}.cpp(50 points). {UNI}
means your UNI number. If you work in pair, {UNI} means UNI1-UNI2.

3

https://clang.llvm.org/docs/RAVFrontendAction.html

