
COMS W4115: Programming Assignment 5
Data flow Analysis

Logistics
1. Announcement Date: November 11th, 2019

2. Due Date: Dec. 2nd, 2019 by 11:59pm. No extension!!

3. Total Points: 100

LLVM Pass for Liveness Analysis
1. Generate LLVM IR and SSA(single static assignment).

(a) Generate LLVM IR for an C program.

./llvm-project/build/bin/clang -O -emit-llvm -c example.c

./llvm-project/build/bin/llvm-dis example.bc

(b) Generate SSA(Single Static Assignment).

llvm-project/build/bin/opt -mem2reg example.bc -o example.bc

2. Write a pass to perform liveness analysis by iterating through the flow graph backwards. You
are provided with a starting file "liveness.cpp" and you should implement the liveness analysis
algorithm in this cpp file. You may need to leverage a use/gen set, def/kill set, live-in set and
live-out set to implement the analysis. The following equations are necessary for implementing
the liveness analysis in the pass.

IN [n] = USE[n] ∪ (OUT [n]−DEF [n])

OUT [n] =
⋃

s∈succ[n]

IN [s]

The pass should take an IR in SSA form as input and output the live-out set after each in-
struction. There are two example inputs and outputs at the end of this file.

3. Notes:

(a) Get used variable for an instruction

User::op_iterator opnd = I.op_begin(), opE = I.op_end();
for (; opnd != opE; ++opnd) {

Value* val = *opnd;
if (isa<Instruction>(val) || isa<Argument>(val)) {

}
}

1

(b) Get defined variable for an instruction

Instruction *pI = &I;
Value* p = cast<Value> (pI);

Return instruction and branch instruction should be handled specially.

(c) Φ instructions
Φ instructions are not real instructions and need to be handled specially by the liveness
analysis. Each operand of a Φ instruction is only live along the edge from the corresponding
predecessor block. In the attached two examples, the first one does not have Φ instructions
while the second one have Φ instructions. You should try to answer what could be the
output if Φ is not handled specially, and then try to come up with an approach to handle
Φ instructions.

Please rename your cpp file to {UNI}-liveness.cpp and submit it. During grading, we will first
rename your cpp file to liveness.cpp and run it as follows.

./build/bin/opt -load ./build/lib/LLVMprog5.so -liveness < example.bc

Please define the created class name and registered LLVM pass name accordingly for full grade.

We may also test your program on other C programs.

Submission Guide
You can either work in pair or work by yourself.

Please submit the followings:

1. You are required to submit {UNI}-liveness.cpp(100 points). {UNI} means your UNI number.

2. Submit an extra file contribution.txt describing each of your contribution if you work in pair.

2

Example input and output
1. Example1

//C program
int g, h;
int test(int condition) {

int x;
if (condition==1)

x = g;
else

x = h;
return x;

}
//SSA
define dso_local i32 @test(i32 %condition) local_unnamed_addr #0 {
entry:

%cmp = icmp eq i32 %condition, 1
%g.val = load i32, i32* @g, align 4
%h.val = load i32, i32* @h, align 4
%x.0 = select i1 %cmp, i32 %g.val, i32 %h.val
ret i32 %x.0

}

Expected output from your pass:

Instruction: %cmp = icmp eq i32 %condition, 1 -->
liveness OUT: {%cmp }

Instruction: %g.val = load i32, i32* @g, align 4 -->
liveness OUT: {%cmp %g.val }

Instruction: %h.val = load i32, i32* @h, align 4 -->
liveness OUT: {%cmp %g.val %h.val }

Instruction: %x.0 = select i1 %cmp, i32 %g.val, i32 %h.val -->
liveness OUT: {%x.0 }

Instruction: ret i32 %x.0 -->
liveness OUT: {}

3

2. Example2

//C program
int sum(int a, int e){

int res = 0;
while (a < e){

int b = a + 1;
a = b*2;

}
return res+a;

}

//SSA
define dso_local i32 @sum(i32 %a, i32 %e) local_unnamed_addr #0 {
entry:

%cmp6 = icmp slt i32 %a, %e
br i1 %cmp6, label %while.body, label %while.end

while.body: ; preds = %entry, %while.body
%a.addr.07 = phi i32 [%mul, %while.body], [%a, %entry]
%add = shl i32 %a.addr.07, 1
%mul = add i32 %add, 2
%cmp = icmp slt i32 %mul, %e
br i1 %cmp, label %while.body, label %while.end

while.end: ; preds = %while.body, %entry
%a.addr.0.lcssa = phi i32 [%a, %entry], [%mul, %while.body]
ret i32 %a.addr.0.lcssa

}

Expected output from your pass:

Instruction: %cmp6 = icmp slt i32 %a, %e -->
liveness OUT: {%a %e %cmp6 }

Instruction: br i1 %cmp6, label %while.body, label %while.end -->
liveness OUT: {%a %e }

Instruction: %a.addr.07 = phi i32 [%mul, %while.body], [%a, %entry] -->
liveness OUT: {%e %a.addr.07 }

Instruction: %add = shl i32 %a.addr.07, 1 -->
liveness OUT: {%e %add }

Instruction: %mul = add i32 %add, 2 -->
liveness OUT: {%e %mul }

Instruction: %cmp = icmp slt i32 %mul, %e -->
liveness OUT: {%mul %cmp }

Instruction: br i1 %cmp, label %while.body, label %while.end -->
liveness OUT: {%mul }

Instruction: %a.addr.0.lcssa = phi i32 [%a, %entry], [%mul, %while.body] -->
liveness OUT: {%a.addr.0.lcssa }

Instruction: ret i32 %a.addr.0.lcssa -->
liveness OUT: {}

4

