
Programming Languages & Translators

Instructor: Baishakhi Ray

Instructor

Prof. Baishakhi Ray

Associate Professor

rayb@cs.columbia.edu

https://rayb.info

Office Hours: Tuesdays 2:00 pm - 3:00 pm

Location: CEPSR 6LE1

mailto:rayb@cs.columbia.edu
http://rayb.info/

PLT 4115

• Lectures:
• Tuesday and Thursday, 11:40 AM-12:55 PM @ CSB 451
• September 3 – December 5

• Get the class updates in the website

• We will use Ed Discussion for class communication
• See your coursework tab option

Programming Language & Translators

How can a computer program written in a high-
level programming language (e.g., C, Python)

be translated to a lower-level language (e.g., assembly
language or machine code) to create an executable

program?

Recommended Text

• Compilers: Principles, Techniques, and Tools
• By Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
• 2nd Edition
• Addison-Wesley, 2006

• We will follow this book
• but not line-by-line/section-by-section

This Class

• Theory: Learn different phases of a compiler design (50%)

• Practice: Implement a compiler (50%)

• Implement different phases of compiler

This Class

Lectures Programming

1 Introduction

2 Lexical Analysis Prog-1

3 Syntax Analysis Prog-2

4 Semantic Analysis Prog-3

5
Run-Time
Environment

6 Code Generation Prog-4

7 Optimization Prog-5, Prog-6

Theory deliverables:
• Written assignments

• Midterm
• Final

Programming
deliverables:

5-6 prog assignments

Default: 2 member
team

Assignments and Grading

• Programming assignments are most important, but most students do well on it. Grades for
tests often vary more.

Extra Credit:
• 10% of earned (extra credit/total extra credit) will be added with the original 100% from

other assignments/exams
• If you earn 50 out of 100 in extra credit, 5 will be added with your total (100%)

achievement.

Assignments and Grading

• Programming Assignments 50%

• Written Assignments 10%

• Midterm 20%

• Final 20%

• Extra Credit 10%

Assignments Policy
• Hard Deadline
• There will be no extension unless you produce medical certificate or permission from school authorities
• The instructor or TAs will not reply to such email requests.
• Plan ahead so that you can finish the assignments on time.
• There can be challenges that you have not anticipated

• Written Assignments will be submitted through Gradescope
• We will share Gradescope entry code
• Type your submission

• Programming Assignments will be submitted through Github Classroom
• TAs will send you detailed instructions

Assignments Policy

• Programming assignments: work in a 2 member team.
• You can discuss with TAs/Instructor/Classmate

• Written assignments: do by yourself.
• No discussion
• Only clarification questions are allowed on Ed Discussion
• TAs/Instructors will not respond to individual email

• DO NOT USE AI-Assisted Tool.

• You will not learn

• We will check for plagiarism

Submission Policy

▪ Read the CS Department’s Academic Honesty Policy:
https://www.cs.columbia.edu/education/honesty/

▪ OK: Discussing lecture content
▪ Not OK: Solving a homework problem with classmates
▪ OK: Doing programming assignments together
▪ Not OK: Copying from others’ solutions.
▪ Not OK: Posting any homework questions or solutions.
▪ Not OK: Use AI-assisted tools to find the answers.

Don’t be a cheater (e.g., copy from each other).
If I catch you cheating I will send you to the dean.

https://www.cs.columbia.edu/education/honesty/

Exam Policy

• Exams: Open book
• Follow CU honor code.
• No internet
• In-class exam

• In-Class Participations
• Class participation is important
• There will be in-class quiz
• Quiz marks will go towards extra credit

Prerequisites

1. Advanced Programming on C/C++
2. Computer Science Theory
1. Regular languages and expressions
2. Context-free grammars
3. Finite automata (NFAs and DFAs)

3. Fundamentals Of Computer Systems
1. Memory layout
2. Register
3. Instruction Set
4. Performance Analysis

Exam Schedule

• Midterm: October 22nd
• Final: December 5th

Submission Links

• Written Assignments : gradescope

 Entry Code will be posted in Coursework

• Programming Assignments : github classroom

 Details will be posted in Coursework

https://www.gradescope.com/
https://classroom.github.com/

Team Project

The Team Project

• Design and implement your little language.

• Six deliverables:
1. A proposal describing your language
2. A language reference manual defining it formally
3. An intermediate milestone: compiling simple program like “Hello World.”
4. A compiler for it, running sample programs
5. Running a small optimization pass.
6. A final project report & presentation

Teams
• Immediately start forming two-person teams
• Each team will develop its own language
• Each team member should participate in design, coding, testing, and

documentation
• Tasks include:

Role Responsibilities
Manager Timely completion of deliverables
Language Guru Language design
System Architect Compiler architecture,

development environment
Compiler
Architect

Architect the optimization plan

• Cover for flaky teammates.
• They will thank you later by completely reforming their behavior, making up for all the

times you did their work for them.
• Assign the least qualified team member to each task.

• Avoid leadership
• include every feature and make all decisions by arguing.
• Never let anybody take responsibility for anything.
• Write software communally so nobody is ever at fault.

• Never tell the instructor or a TA that something is wrong with your group. It
will only lower your grade.

Start Early!!

How Do You Work In a Team?

• Address problems sooner rather than later
• If you think your teammate’s a flake, you’re right

• Complain to me or your TA as early as possible
• Alerting me a day before the project is due isn’t helpful

• Not every member of a team will get the same grade
• Remind your slacking teammates of this early and often

First Three Tasks

• Decide who you will work with
• You’ll be stuck with them for the term; choose wisely.

• Assign a role to each member

• Select a weekly meeting time

Project Proposal

• Describe the language that you plan to implement.
• Explain what sorts of programs are meant to be written in your

language
• Explain the parts of your language and what they do
• Include the source code for an interesting program in your language
• 2–4 pages

Project Due Dates (Tentative)
Section Author
1. Proposal September 17 (soon)

2. Language Reference Manual October 1st

3. Parser & Semantic Analysis October 15th

4. Code Generation November 7th
5. Demonstrate Simple program November 26th
5. Enhancement (complex
feature, optimization)

December 10th
(extra credit)

7. Final Report & Demo December 15th

Sample Projects
1. Simple Calculator (arithmetic expression evaluator)

§ Parse and evaluate simple arithmetic expressions like "2 + 3 * 4”
§ Support basic operators: +, -, *, /
§ Handle parentheses for precedence

2. Tiny general-purpose programming language interpreter
§ Design a minimal language with variables, if statements, and loops
§ Implement a lexer, parser, and interpreter for the language

3. JSON parser
§ Create a parser for a subset of JSON
§ Convert JSON strings into an internal data structure

Sample Projects

4. Regular expression engine

 - Implement a simple regex engine supporting basic patterns

 - Include features like character classes, repetition, and alternation

5. Markdown to HTML converter

 - Parse a subset of Markdown syntax

 - Generate corresponding HTML output

6. Simple query language for CSV files

 - Design a basic query language to filter and select data from CSV files

 - Implement a parser and executor for the queries

Sample Project: PromptLang Compiler

• Create a compiler that translates natural language prompts into a
formal, structured query language designed for interacting with LLMs.
• Combines NLP + Compiler techniques

• The structured query language, PromptLang, will allow for:
• more precise control over LLMs
• specify intents, contexts, constraints
• expected outputs in a formalized way.

Key Components

1. Lexer (Tokenizer): Tokenizes natural language input into words, phrases, and operators, identifying key elements like intents,
entities, actions, and constraints.

2. Parser: Converts the tokens into an Abstract Syntax Tree (AST) that represents the structure of the prompt in terms of intent,
context, and expected outcomes.

3. Semantic Analyzer: Ensures that the parsed prompt is valid within the context of PromptLang, checking for consistency and
ensuring that all necessary elements (like intents and constraints) are present.

4. Intermediate Representation (IR) Generation: Translates the AST into an intermediate representation (IR) that captures the
essential elements of the prompt in a more structured form.

5. Code Generator: Converts the IR into a structured PromptLang query, which can be used to interact with LLMs more effectively.

6. Interpreter: Executes the PromptLang query by interacting with an LLM API, such as GPT, and returning the results to the user.

Sample Project: TinySQL Compiler

• A miniaturized version of SQL designed for basic database queries.

• The goal of this project is to create a compiler that translates TinySQL queries into a simple query
execution plan that a rudimentary database engine can execute.

• This project involves parsing SQL-like syntax, generating execution plans, and interpreting those
plans to retrieve data from a simulated database.

• SELECT name, age FROM users WHERE age > 18;
• SELECT users.name, orders.amount FROM users JOIN orders ON users.id = orders.user_id;

Project Structure
1. Lexer: Identify SQL tokens such as SELECT, INSERT, FROM, WHERE, operators (=, >, <), and literals

(strings, numbers).
2. Parser:Build a parse tree or AST that captures the structure of the SQL query. For example, the

query SELECT name FROM users WHERE age > 18 would result in an AST that includes nodes for
the SELECT clause, FROM clause, and WHERE clause.

3. Semantic Analyzer: Validate that tables and columns referenced in the query exist and that
operations are type-correct (e.g., comparing integers with integers).

4. Query Planner: Create a simple execution plan from the AST. For instance, the execution plan for
SELECT might involve scanning a table, applying filters, and projecting columns.

5. Query Executor: Execute the plan by scanning data from the in-memory tables, applying filters,
and returning the results as a list or table.

6. Database Engine: Implement basic functionality to store tables and handle data operations such as
insertions, updates, and simple indexing for faster lookups.

Sample Project: ExprLang Compiler

• A small language designed specifically for mathematical expressions and simple control flow.

• The language supports arithmetic operations, variables, conditionals, and functions.

• This project aims to create a compiler that translates ExprLang code into a simple stack-based
bytecode, which will be executed by a custom virtual machine (VM).
• x = 5;
• y = x + 10;
• z = (x + y) * 2;
• if (x > 10) { y = y + 1; } else { y = y - 1; }

Cooler Sample Projects

• Emoji programming language
• Music notation compiler
• ASCII art generator language
• Cellular automata simulator
• Procedural story generator
• Code obfuscator
• SVG generation language
• Chatbot scripting language
• Meme generator language
• Puzzle game-level compiler
• Choreography notation compiler
• Network protocol simulator

