REGISTER ALLOCATION

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin

The Register Allocation Problem

- Intermediate code uses unlimited temporaries
- Simplifies code generation and optimization
- Complicates final translation to assembly
- Typical intermediate code uses too many temporaries
- The problem:
- Rewrite the intermediate code to use no more temporaries than there are machine registers
- Method:
- Assign multiple temporaries to each register - But without changing the program behavior

An Example

- Consider the program
a $:=c+d$
e $:=a+b$
f := e - 1
- Assume a and e dead after use
- Temporary a can be "reused" after e := a + b
- So can temporary e
- Can allocate a, e, and f all to one register (r1):
r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1
- A dead temporary is not needed
- A dead temporary can be reused

The Idea

- Temporaries t_{1} and t_{2} can share the same register if at any point in the program at most one of t_{1} or t_{2} is live.
i.e.,
- If t_{1} and t_{2} are live at the same time, they cannot share a register

Algorithm: Part I

- Compute live variables for each point:

The Register Interference Graph

- Construct an undirected graph
- A node for each temporary
- An edge between t_{1} and t_{2} if they are live simultaneously at some point in the program
- This is the register interference graph (RIG)
- Two temporaries can be allocated to the same register if there is no edge connecting them

Example

- E.g., b and c cannot be in the same register
- E.g., b and d could be in the same register

Definitions

- A coloring of a graph is an assignment of colors to nodes, such that nodes connected by an edge have different colors
- A graph is k-colorable if it has a coloring with k colors

Example After Register Allocation

- Compute live variables for each point:

Computing Graph Colorings

- How do we compute graph colorings?
- It isn't easy:
- This problem is very hard (NP-hard).
- No efficient algorithms are known.
- Solution: use heuristics
- A coloring might not exist for a given number of registers
- Solution: later

Graph Coloring Heuristic

- Observation:
- Pick a node t with fewer than k neighbors in RIG
- Eliminate t and its edges from RIG
- If resulting graph is k-colorable, then so is the original graph
- Why?
- Let c1,..., cn be the colors assigned to the neighbors of t in the reduced graph
- Since $n<k$ we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

- The following works well in practice:
- Pick a node t with fewer than kneighbors
- Put t on a stack and remove it from the RIG
- Repeat until the graph has one node
- Assign colors to nodes on the stack
- Start with the last node added
- At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

- Start with the RIG and with $\mathrm{k}=4$:

Stack: \{\}

- Remove a

Graph Coloring Example (2)

Stack: \{a\}

- Remove d

Graph Coloring Example (3)

$$
\text { Stack: }\{d, a\}
$$

- Remove c

Graph Coloring Example (4)

$$
\text { Stack: }\{c, d, a\}
$$

- Remove b

Graph Coloring Example (5)

Stack: $\{b, c, d, a\}$

- Remove e

Graph Coloring Example (6)

- Remove f

Graph Coloring Example (7)

Stack: \{f, e, b, c, d, a\}

Graph Coloring Example (8)

Graph Coloring Example (9)

$$
\text { Stack: }\{b, c, d, a\}
$$

- e must be in a different register from f

Graph Coloring Example (10)

Stack: \{c, d, a\}

Graph Coloring Example (11)

Stack: $\{d, a\}$

Graph Coloring Example (12)

Stack: \{a\}

Graph Coloring Example (13)

Stack: $\}$

What if the Heuristic Fails?

- What if all nodes have k or more neighbors ?
- Example: Try to find a 3-coloring of the RIG:

What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
- Pick a node as a candidate for spilling
- A spilled temporary "lives" in memory
- Assume that f is picked as a candidate

What if the Heuristic Fails?

- Remove f and continue the simplification
- Simplification now succeeds: b, d, e, c

What if the Heuristic Fails?

- Eventually we must assign a color to f
- We hope that among the 4 neighbors of f we use less than 3 colors \Rightarrow optimistic coloring

Spilling

- If optimistic coloring fails, we spill f
- Allocate a memory location for f
- Typically in the current stack frame
- Call this address fa
- Before each operation that reads f, insert
f := load fa
- After each operation that writes f, insert store f, fa

Spilling Example

- This is the new code after spilling f

A Problem

- This code reuses the register name f
- Correct, but suboptimal
- Should use distinct register names whenever possible
- Allows different uses to have different colors

Spilling Example

- This is the new code after spilling f

Recomputing Liveness Information

- The new liveness information after spilling:

Recomputing Liveness Information

- New liveness information is almost as before
- Note f has been split into three temporaries
- fi is live only
- Between a fi := load fa and the next instruction
- Between a store fi, fa and the preceding instr.
- Spilling reduces the live range of f
- And thus reduces its interferences
- Which results in fewer RIG neighbors

Recompute RIG After Spilling

- Some edges of the spilled node are removed
- In our case f still interferes only with c and d
- And the resulting RIG is 3 -colorable

Spilling Notes

- Additional spills might be required before a coloring is found
- The tricky part is deciding what to spill
- But any choice is correct
- Possible heuristics:
- Spill temporaries with most conflicts
- Spill temporaries with few definitions and uses
- Avoid spilling in inner loops

Caches

- Compilers are very good at managing registers
- Much better than a programmer could be
- Compilers are not good at managing caches
- This problem is still left to programmers
- It is still an open question how much a compiler can do to improve cache performance
- Compilers can, and a few do, perform some cache optimizations

Cache Optimization

- Consider the loop

$$
\begin{aligned}
& \text { for }(j:=1 ; j<10 ; j++) \\
& \text { for }(i=1 ; i<1000 ; i++) \\
& \quad \text { [i] } *=b[i]
\end{aligned}
$$

- This program has terrible cache performance
- Why?

Cache Optimization

- Consider the program

$$
\begin{aligned}
& \text { for }(i=1 ; i<1000 ; i++) \\
& \qquad \text { for }(j:=1 ; j<10 ; j++) \\
& \quad a[i] *=b[i]
\end{aligned}
$$

- Computes the same thing
- But with much better cache behavior
- Might actually be more than 10x faster
- A compiler can perform this optimization
- called loop interchange

Conclusions

- Register allocation is a "must have" in compilers:
- Because intermediate code uses too many temporaries
- Because it makes a big difference in performance
- Register allocation is more complicated for CISC machines

