
REGISTER ALLOCATION
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken and Prof. Calvin Lin

The Register Allocation Problem

▪ Intermediate code uses unlimited temporaries
▪ Simplifies code generation and optimization
▪ Complicates final translation to assembly

▪ Typical intermediate code uses too many temporaries

▪ The problem:
▪ Rewrite the intermediate code to use no more temporaries than there are machine registers

▪ Method:
▪ Assign multiple temporaries to each register – But without changing the program behavior

An Example

▪ Consider the program
 a := c + d
 e := a + b
 f := e - 1

▪ Assume a and e dead after use
▪ Temporary a can be “reused” after e := a + b
▪ So can temporary e

▪ Can allocate a, e, and f all to one register (r1):
r1 := r2 + r3
r1 := r1 + r4
r1 := r1 - 1

▪ A dead temporary is not needed
▪ A dead temporary can be reused

The Idea

▪ Temporaries t1 and t2 can share the same register if at any point in the program at
most one of t1 or t2 is live.

i.e.,

▪ If t1 and t2 are live at the same time, they cannot share a register

Algorithm: Part I

▪ Compute live variables for each point:

f := 2 * e

a := b + c
d := -a
e := d + f

b := d + e
e := e - 1

b := f + c

{a,c,f}

{c,d,f}

{c,e}

{c,f} {c,f}

{b}

{b}

{b, c, e, f}

{c,d,e,f}

{b,c,f}

The Register Interference Graph

▪ Construct an undirected graph
▪ A node for each temporary
▪ An edge between t1 and t2 if they are live simultaneously at some point in the program

▪ This is the register interference graph (RIG)
▪ Two temporaries can be allocated to the same register if there is no edge connecting them

Example

• E.g., b and c cannot be in the same register
• E.g., b and d could be in the same register

Definitions

▪ A coloring of a graph is an assignment of colors to nodes, such that nodes connected
by an edge have different colors

▪ A graph is k-colorable if it has a coloring with k colors

r1

r2

r2

r3

r3

r4

• There is no coloring with less than 4 colors
• There are 4-colorings of this graph

Example After Register Allocation

▪ Compute live variables for each point:

r1 := 2 * r2

r2 := r3 + r4
r3 := -r2
r2 := r3 + r1

r3 := r3 + r2
r2 := r2 - 1

r3 := r1 + r4

Computing Graph Colorings

▪ How do we compute graph colorings?

▪ It isn’t easy:
▪ This problem is very hard (NP-hard).
▪ No efficient algorithms are known.

▪ Solution: use heuristics
▪ A coloring might not exist for a given number of registers

▪ Solution: later

Graph Coloring Heuristic

▪ Observation:
▪ Pick a node t with fewer than k neighbors in RIG
▪ Eliminate t and its edges from RIG
▪ If resulting graph is k-colorable, then so is the original graph

▪ Why?
▪ Let c1,…,cn be the colors assigned to the neighbors of t in the reduced graph
▪ Since n < k we can pick some color for t that is different from those of its neighbors

Graph Coloring Heuristic

▪ The following works well in practice:
▪ Pick a node t with fewer than k neighbors
▪ Put t on a stack and remove it from the RIG
▪ Repeat until the graph has one node

▪ Assign colors to nodes on the stack
▪ Start with the last node added
▪ At each step pick a color different from those assigned to already colored neighbors

Graph Coloring Example (1)

▪ Start with the RIG and with k = 4:

▪ Remove a

f

a

b

c

d

e

Stack: {}

Graph Coloring Example (2)

▪ Remove d

f b

c

d

e

Stack: {a}

Graph Coloring Example (3)

▪ Remove c

f b

c
e

Stack: {d, a}

Graph Coloring Example (4)

▪ Remove b

f b

e

Stack: {c, d, a}

Graph Coloring Example (5)

▪ Remove e

f

e

Stack: {b, c, d, a}

Graph Coloring Example (6)

▪ Remove f

f
Stack: {e, b, c, d, a}

Graph Coloring Example (7)

Stack: {f, e, b, c, d, a}

Graph Coloring Example (8)

Stack: {e, b, c, d, a}
 r1 f

Graph Coloring Example (9)

▪ e must be in a different register from f

r1 f

r2 e

Stack: {b, c, d, a}

Graph Coloring Example (10)

r1 f b r3

r2 e

Stack: {c, d, a}

Graph Coloring Example (11)

r1 f b r3

c r4
 r2 e

Stack: {d, a}

Graph Coloring Example (12)

r1 f
b r3

c r4

d r3

r2 e

Stack: {a}

Graph Coloring Example (13)

Stack: {}
r1 f

a r2

b r3

c r4

d r3

r2 e

What if the Heuristic Fails?

▪ What if all nodes have k or more neighbors ?

▪ Example: Try to find a 3-coloring of the RIG:

f

a

b

c

d

e

What if the Heuristic Fails?

▪ Remove a and get stuck (as shown below)

▪ Pick a node as a candidate for spilling
▪ A spilled temporary “lives” in memory
▪ Assume that f is picked as a candidate

f
b

c

d

e

What if the Heuristic Fails?

▪ Remove f and continue the simplification
▪ Simplification now succeeds: b, d, e, c

b

c

d

e

What if the Heuristic Fails?

▪ Eventually we must assign a color to f

▪ We hope that among the 4 neighbors of f we use less than 3 colors ⇒ optimistic
coloring

? f
b r3

c r1

d r3

r2 e

Spilling

▪ If optimistic coloring fails, we spill f
▪ Allocate a memory location for f

▪ Typically in the current stack frame
▪ Call this address fa

▪ Before each operation that reads f, insert
f := load fa

▪ After each operation that writes f, insert
store f, fa

Spilling Example

▪ This is the new code after spilling f

f := 2 * e
store f, fa

a := b + c
d := -a
f := load fa
e := d + f

b := d + e
e := e - 1

f = load fa
b := f + c

A Problem

▪ This code reuses the register name f

▪ Correct, but suboptimal
▪ Should use distinct register names whenever possible
▪ Allows different uses to have different colors

Spilling Example

▪ This is the new code after spilling f

f2 := 2 * e
store f2, fa

a := b + c
d := -a
f1 := load fa
e := d + f1

b := d + e
e := e - 1

f3 = load fa
b := f3 + c

Recomputing Liveness Information

▪ The new liveness information after spilling:

f2 := 2 * e
store f2, fa

a := b + c
d := -a
f1 := load fa
e := d + f1

b := d + e
e := e - 1

f3:= load fa
b := f3 + c

{a,c,f}

{c,d,f}

{c,e}

{c,f} {c,f}

{b}

{b}

{b,c,e,f}

{c,d,e,f}

{b,c,f}

{c,d,f1}

{c,f2}

{c,f3}

Recomputing Liveness Information

▪ New liveness information is almost as before
▪ Note f has been split into three temporaries

▪ fi is live only
▪ Between a fi := load fa and the next instruction
▪ Between a store fi, fa and the preceding instr.

▪ Spilling reduces the live range of f
▪ And thus reduces its interferences
▪ Which results in fewer RIG neighbors

Recompute RIG After Spilling

▪ Some edges of the spilled node are removed

▪ In our case f still interferes only with c and d

▪ And the resulting RIG is 3-colorable

Spilling Notes

▪ Additional spills might be required before a coloring is found

▪ The tricky part is deciding what to spill
▪ But any choice is correct

▪ Possible heuristics:
▪ Spill temporaries with most conflicts
▪ Spill temporaries with few definitions and uses
▪ Avoid spilling in inner loops

Caches

▪ Compilers are very good at managing registers
▪ Much better than a programmer could be

▪ Compilers are not good at managing caches
▪ This problem is still left to programmers
▪ It is still an open question how much a compiler can do to improve cache performance

▪ Compilers can, and a few do, perform some cache optimizations

Cache Optimization

▪ Consider the loop

▪ This program has terrible cache performance
▪ Why?

for(j := 1; j < 10; j++)
 for(i=1; i<1000;i++)
 a[i] *= b[i]

Cache Optimization

▪ Consider the program

▪ Computes the same thing
▪ But with much better cache behavior
▪ Might actually be more than 10x faster

▪ A compiler can perform this optimization
▪ called loop interchange

for(i=1; i<1000; i++)
 for(j := 1; j < 10; j++)
 a[i] *= b[i]

Conclusions

▪ Register allocation is a “must have” in compilers:
▪ Because intermediate code uses too many temporaries
▪ Because it makes a big difference in performance

▪ Register allocation is more complicated for CISC machines

