Programming Languages & Translators

LEXICAL ANALYSIS

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) m

Structure of a Typical Compiler

Character stream Synthesis Phase
I I - - - —m mEmmEms= -
S N

Lexical Analysis Intermediate Code
Generation

Analysis Phase
,

\
-

Token stream

Syntactic Analysis

Syntax trees

Semantic Analysis

gl Il BN I I IS S S -
I I I S S S S S S -

\ Syntax trees
S - —

Interpreter | R IR -

Input to Compiler

Character stream

Intermediate Code
Generation

/*simple example*/

Lexical Analysis

Token stream
Syntactic Analysis optimization

Syntax trees

Semantic Analysis Code Generation

Syntax trees

Interpreter Target Language

/ * simple example=*/

if (i == 3)\n\t z = 0 ; \n else\n\t

Lexical Analysis

/ *simple example?>*/
if (1= j)\n\t z 0 ;

2.2. ldentify token classes

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR

whitespaces identifier<z> op<=> number<0> <;> whitespaces
keyword<else> identifier<z> op<=> number<l> ‘;’

Token Class

keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR
whitespaces identifier<z> op<=> number<0> <;> whitespaces
keyword<else> identifier<z> op<=> number<l> ‘;’

= keywords, identifiers, LPAR, RPAR, number, etc.

Token Class

Each class corresponds to a set of strings

|dentifier
= Strings are letters or digits, starting with a letter
= Eg:

Numbers:
= A non-empty strings of digits
= Eg:

Keywords
= A fixed set of reserved words
= Eg:

Whitespace
= A non-empty sequence of blanks, newlines, and tabs

Different Language can treat same symbol difterently

= WhiteSpace in Python:

= Except at the beginning of a logical line or in string literals, the whitespace
characters space and tab can be used interchangeably to separate tokens.

= Whitespace is needed between two tokens only if their concatenation could
otherwise be interpreted as a different token (e.g., ab is one token, but a b is two
tokens).

= Whitespace in C Like Language:

= Blanks, horizontal and vertical tabs, newlines formfeeds, and comments as
described below (collectively, "white space") are ignored except as they separate
tokens.

Lexical Analysis (Example)

= Classify program substrings according to roles (token class)

= Communicate tokens to parser

Character stream

Lexical Analysis

Token stream

Token =
<Class, String>

Syntactic Analysis

(Parser)

Z=1
- <ld, “Z’>
_ <Op, u=”>

- <Numbers, “1”>

“Z’, “=",“1” are called lexemes (an instance of the corr. token class)

Lexical Analysis: HTML Examples

Here is a photo of my house

<text, "Here is a photo of">
<nodestart, b>

<text, "my house">
<nodeend, b>

Exercise

X = p;
while (x < 100) { x++ ; }

Exercise

==/=?

Keyword/ldentifier?

Lookahead

= Lexical analysis tries to partition the input string into the logical units of the language.
This is implemented by reading left to right. “scanning”, recognizing one token at a
time.

= “Lookahead” is required to decide where one token ends and the next token begins.

==/=?

Keyword/ldentifier?

Lookahead: Examples

= Usually, given the pattern describing the lexemes of a token, it is relatively simple to
recognize matching lexemes when they occur on the input.

= However, in some languages, it is not immediately apparent when we have seen an
instance of a lexeme corresponding to a token.

FORTRAN RULE: White Space is insignificant: VA R1 == VARI

DO 5 I 1,25

DO 5 I 1.25

= Lexical analysis may require to “look ahead” to resolve ambiguity.
= Look ahead complicates the design of lexical analysis
= Minimize the amount of look ahead

Lexical Analysis: Examples

= C++ template Syntax:
= Foo<Bar>

= C++ stream Syntax:
= cin >>var

= Ambiguity
= Foo<Bar<Bar>>
= Cin >>var

Lexical Errors

= Alexical error is any input that can be rejected by the lexer.
= When a token cannot be recognized by the rules defined token class

= Example: '@'is rejected as a lexical error for identifiers in Java (it's reserved).

= Recovery
= Panic Mode: delete successive characters until a valid token is found
= Delete one character from remaining inputs
= Insert one character in the remaining input

= Replace / transpose

Lexical Errors

= |s fi lexical error?
= |t can be a function identifier

= |t is quite difficult for a lexical analyzer to decide whether fi is an error without
further information

Summary So Far

= The goal of Lexical Analysis
= Partition the input string to lexeme
= |dentify the token class of each lexeme

= Left-to-right scan => look ahead may require
= |n reality, lookahead is always needed

= Our goal is to minimize thee amount of lookahead

Recognizing Token Class

Token Class

String patterns that
describe the class

= How to describe the string patterns?
= i.e., which set of strings belongs to which token class?
= Use regular languages

» Use Regular Expressions to define Regular Languages.

REGULAR LANGUAGES

Regular Expressions

= Single character

= 0= {7}
= Epsilon

- e={")
= Union

« A+tB={alaecA}U{blbeB}

Concatenation
« AB={ablaeA? beB}

= |teration (Kleene closure)
A% = U Al=A%AL Al AL A(itimes)

>=0

= UAi (no empty string is allowed)
i>0

Regular Expressions

= Def: The regular expressions over 2 are the smallest set of expressions including
R=¢
| ‘’c’,‘c’e 2
IR +R
| RR
| R*

Regular Expression Example

« 2 ={p,q}
- q*
- (p+a)g
- pr4g”
- (p+q)*

= There can be many ways to write an expression

Exercise

Choose the regular languages that are equivalent to the given regular language: (p + g)*q(p + q)*
A. (Pq +qq)(p + q)*
B. (p +q)*(ap +qq + q)(p + q)*
C.(@+p)a@+p)*

D.(p+a9)(p +a)p +9)*

Formal Languages

= Def: Let 2 be a set of character (alphabet). A language over 2 is a set
of strings of characters drawn from 2..

= Reqgular languages is a formal language

= Alphabet = English character, Language = English Language
= |s it formal language?

= Alphabet = ASCII, Language = C Language

Formal Language

© = {c’)
e ={")
A+B={alaeA}U{blbeB}
AB={ablaecANM beB}

A" = UAZ

) i»=0

expression y
Set

Formal Language

(‘) = {*c"}
L(e) {*}
LA+B)={alaeL(A)}U{blbelL(B)}
L(AB ={ablaeL(A)* belL(B)}
LA = | L
K_Y_) \l> =0 |

expression y
Set

L: Expressions -> Set of strings
Meaning function L maps syntax to semantics
Mapping is many to one
Q: One to Many?

Formal Language

(‘) = {*c"}
L(e) {*}
LA+B)={alaeL(A)}U{blbelL(B)}
L(AB ={ablaeL(A)* belL(B)}
LA = | L
K_Y_) \l> =0 |

expression y
Set

L: Expressions -> Set of strings
Meaning function L maps syntax to semantics
Mapping is many to one
Never one to many

Lexical Specifications

= Keywords: “if” or “else” or “then” or “for”
= Regular expression =9 F + ‘e’ ‘I ‘'s’ ‘e’
= if’ + ‘else’ + ‘then’

= Numbers: a non-empty string of digits
= digit = ‘1"+'0’+2'+'3'+'4’'+'5'+'6’+'7'+'8'+'9’
= digit*
= How to enforce non-empty string?
= digit digit* = digit+

Lexical Specifications

= |dentifier: strings of letters or digits, starting with a letter
n letter=a’+ D' +c+....+Z+A+B+....+7Z
= [a-zA-Z]
= |letter (letter + digit)*

= Whitespace: a non-empty sequence of blanks, newline, and tabs
= (“74+ 7+)

PASCAL Lexical Specification

« digit = ‘0'+'1'+2°+'3'+'4'+'5’+'6’+7'+'8'+'9’

= digits = digit+

= Opt_fraction = (*.” digits) + € = (*.” digits)?

« Opt_exponent = (‘E’ ("+' + -’ + €) digits) + €

=(‘E’ ('+" + °-")? digits)?

= num = digits opt_fraction opt_exponent

Common Regular Expression

= At least one A+ = AA’

« UniontAIB=A+B

« Option: A=A+ ¢

= Range: ‘a’+ ... + ‘2’ =[a-Z]

»« Excluded range: complement of [a-z] = [*a-Z]

Summary of Regular Languages

= Regular Expressions specify regular languages

= Five constructs
= Two base expression

= Empty and 1-character string

= Three compound expressions

= Union, Concatenation, lteration

Lexical Specification of a language

1. Write a regex for the lexemes of each token class
= Number = digit+
=« Keywords = ‘if’ + ‘else’ + ‘while’ + ‘for’ + ‘return’...
= |dentifiers = letter (letter + digit)*
« LPAR =(f
= RPAR=)’

Lexical Specification of a language

2. Construct R, matching all lexemes for all tokens
R = Number + Keywords + ldentifiers + ...
=R, +R,+R;+...
3. Let input be x,...x.
For 1 <i < n, checkx,...x; € L(R)
4. If successful, then we know that
X;...%; € L(R;) for some |

5. Remove x,...x; from input and go to step 3.

Lexical Specification of a language

= How much input is used?

a Xq...X € L(R)
« XX €L(R), T F
= Which one do we want? (e.g., == or =)

= Maximal munch: always choose the longer one

= Which token is used if more than one matches?
a X;...X, € L(R)where R=R; + R, +.. + R,
= X;...X% € L(R,,)
= XX, €L(R), m #n
= Eg: Keywords = ‘if’, Identifier = letter (letter + digit)*, if matches both

= Keyword has higher priority
= Rule of Thumb: Choose the one listed first

Lexical Specification of a language

= What if no rule matches?
= X;...X & L(R) ... compiler typically tries to avoid this scenario

= Error = [all strings not in the lexical spec]
= Put it in last in priority

Summary so far

= Regular Expressions are concise notations for the string patterns

= Use in lexical analysis with some extensions
= To resolve ambiguities
= To handle errors

= [mplementation?
= We will study next

Recognizing Lexemes:
a simple character by character formulation

Recognize word while

c=NextChar();
if(cl='w") { }
else {
c=NextChar();
if(c!='h") { }
else {
c=NextChar();
if(c!="1"){ }
else {
c=NextChar();
if(c!="1"){ }
else{
c=NextChar();
if(cl='e"){ }
else{
/*report success*/

}ri}

Si s are all abstract states
of computation

Recognizing Lexemes

m X = 1

A Formalism of Recognizer

= A finite automaton consists of
= An input Alphabet: 2
A finite set of states: S O

A start state: A’O
A set of accepting states: F C S @

] t
A set of transitions state: state1 ﬂ state?
a

ofiie

A Formalism of Recognizer

= A finite automaton consists of
= An input Alphabet: 2
A finite set of states: S O

S={S0, S]’ Sz, S3}

2 ={x,=1}
. . = 1
A start state: SO —’O 5 =4S, X S1,Sy = S5, Sy — S5}
= A set of accepting states: F C S @
SO = SO
input
. Aset of transitions state §: state1 —— state2 F=1{5,5,9%}

a

ofiie

A simple parser for x=1

c=NextChar();

state=3,

while(c!=‘eof’ and state!=S§,.) { Y = {x,=,1)
state=0(state, c)

S={S0, Sl’ Sz, S3}

c=NextChar () ; 5=18) 5 S1.Sp > S0, Sy > S3)
}
AYSEE Y
if (state € IF) oY
/* report acceptance */ F=1{5.,S5,5)}
else

/* report failure */

Example: Lexeme Recognition

= Show simple state transitionof : e=m *¢c ** 2

S={So, Sl’ S2, S3, S4, SS’ S6’ S7}

2 = {e!m’C’*’**12’=}

5= {825,838 8 ™ S5, Sy — Sy Sy — S,y 5 S, Sy S S,

S():SO

F = {Sl’ Sz, S3, S4, S5’ S6’ S7}

Input Buffering

me=m*c*2m

forward

v

* * 2 eof

b

lexemeBegin sentinel

Finite Automata

= Regular Expression = specification

= Finite Automata = implementation

= A finite automaton consists of
= An input Alphabet: 2
= A finite set of states: S O

= A start state: n A’O
= A set of accepting states: F C S @

] t
= A set of transitions state: state1 ﬂ state?2

Transition

s1 5 2 (state s1 on input a goes to state s2)

If end of the input and in final state, the input is accepted

Otherwise reject

Language of FA = set of strings accepted by that FA

Example Automata

= a finite automaton that accepts only “1”

Example Automata

= A finite automaton that accepting any number of “1” followed by “0”

Regular Expression to NFA

» For € (it’s a choice)
&

= For input a

Finite Automata

= Deterministic Finite Automata (DFA)
= One transition per input per state
= NO £-moves

= Takes only one path through the state graph

= Nondeterministic Finite Automata (NFA)
» Can have multiple transitions for one input in a given state
= Can have &-moves
= Can choose which path to take

= An NFA accepts if some of these paths lead to accepting state at the end of input.

Finite Automata

= An NFA can get into multiple states

= [nput: 1 0 0
= Output: {A}. {AB} {A,B,C}

NFA vs. DFA

= NFAs and DFAs recognize the same set of regular languages

= DFAs are faster to execute

= No choices to consider

= NFAs are, in general, small

Lexical Specification
Regular Expressions

Table driven implementation of
automata

Lexical Specification

Table driven implementation of
automata

Finite Automata

= For each kind of regex, define an equivalent NFA
= Notation: NFA for regex M

Regular Expression to NFA

s FOre
E

= Forinput a A.C{—\Q

Regular Expression to NFA
= For AB

5

= ForA+B

Regular Expression to NFA

= For A*

Example

= (g+P)"q

Example

= 1" +0

Example

Choose the NFA that accepts the regular expression: 1* + 0.

NFA to DFA

Lexical Specification
Regular Expressions

Table driven implementation of
automata

e-closure

» £-closure of a state is all the state | can reach following € move.

e-closure(B) ={B,C,D}

e-closure

» £-closure of a state is all the state | can reach following € move.

e-closure(B) ={B,C,D}
e-closure(G) ={A,B,C,D,G,H,I}

NFA to DFA

NFA DFA

=« States S » States will be all possible subset of S

except empty set
= Start s

« Start state = € — closure(s)
= Final state F

N . Final state {X | X nF!= @}
= Transition state

.a(X)={nyEX/\x—a>y) X S Y if
= Y =¢ — closure(a(X))

« £ —closure

NFA to DFA

NFA to DFA

ABCDHI

NFA to DFA

ABCDHI

FGHIABCD

NFA to DFA

ABCDHI

FGHIABCD

q EJGHIABCD

NFA to DFA

NFA to DFA

Example: NFA to DFA

O Eo

— (3 (2

0

Example: NFA to DFA

° 6“I|i|hle O
8 *
E
- (& <>
0

.\O. 1

NFA to DFA

Lexical Specification
Regular Expressions

Table driven implementation of
automata

Implementing DFA

= ADFA can be implemented by a 2D table T
= One dimension is states
= Another dimension is input symbol
= For every transition s, ->a s, : define T[i,a] =k

Implementing DFA

Table A

i = p;

state = 0;

while(input[i]) {
state = A[state,input[i]];
i++;

}

Implementing DFA

Table A

I
-
T R
.

A lot of duplicate entries

Table B

Compact but need an extra indirection
e
T U

Implementing DFA

Deal with set of states rather than single state--> inner loop is complicated

Deterministic Finite Automata: Example

{
type token = ELSE | ELSEIF

}

rule token =
parse "else"{ ELSE }
| "elseif"{ ELSEIF }

= | S e ;
ENg Sivg Rivg livg Livg Ritg Lig'

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if"{ IF }
| ["a’="z"] ["a"-"z" "0'-'9"] as 1it { ID(lit) }
| [707-="797]+ * as num { NUM (num) }

PROGRAMMING ASSIGNMENT1

Recognizing Lexemes:
a simple character by character formulation

Recognize word while

c=NextChar();
if(cl='w") { }
else {
c=NextChar();
if(c!='h") { }
else {
c=NextChar();
if(c!="1"){ }
else {
c=NextChar();
if(c!="1"){ }
else{
c=NextChar();
if(cl='e"){ }
else{
/*report success*/

}ri}

Si s are all abstract states
of computation

Recognizing Lexemes

m X = 1

A Formalism of Recognizer

= A finite automaton consists of
= An input Alphabet: 2
A finite set of states: S O

A start state: A’O
A set of accepting states: F C S @

] t
A set of transitions state: state1 ﬂ state?
a

ofiie

A Formalism of Recognizer

= A finite automaton consists of
= An input Alphabet: 2
A finite set of states: S O

S={S0, S]’ Sz, S3}

2 ={x,=1}
. . = 1
A start state: SO —’O 5 =4S, X S1,Sy = S5, Sy — S5}
= A set of accepting states: F C S @
SO = SO
input
. Aset of transitions state §: state1 —— state2 F=1{5,5,9%}

a

ofiie

A simple parser for x=1

c=NextChar();

state=3,

while(c!=‘eof’ and state!=S§,.) { Y = {x,=,1)
state=0(state, c)

S={S0, Sl’ Sz, S3}

c=NextChar () ; 5=18) 5 S1.Sp > S0, Sy > S3)
}
AYSEE Y
if (state € IF) oY
/* report acceptance */ F=1{5.,S5,5)}
else

/* report failure */

Example: Lexeme Recognition

= Show simple state transitionof : e=m *¢c ** 2

S={So, Sl’ S2, S3, S4, SS’ S6’ S7}

2 = {e!m’C’*’**12’=}

5= {825,838 8 ™ S5, Sy — Sy Sy — S,y 5 S, Sy S S,

S():SO

F = {Sl’ Sz, S3, S4, S5’ S6’ S7}

Input Buffering

me=m*c*2m

forward

v

* * 2 eof

b

lexemeBegin sentinel

Question?

= Can we run out of buffer space?

