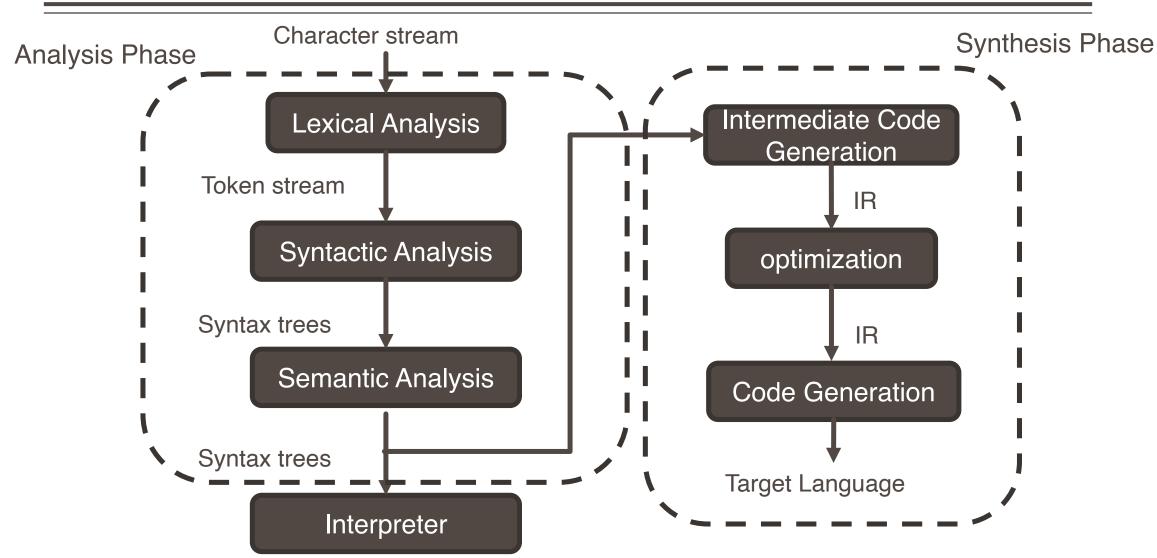
Programming Languages & Translators

LEXICAL ANALYSIS

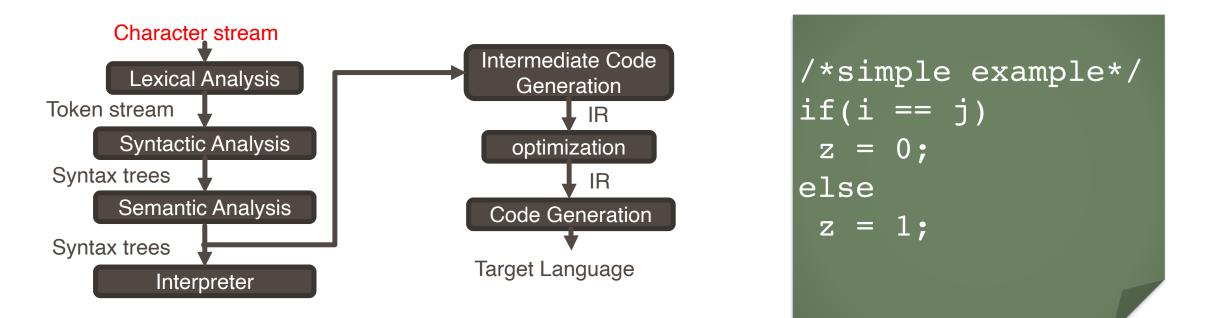
Baishakhi Ray

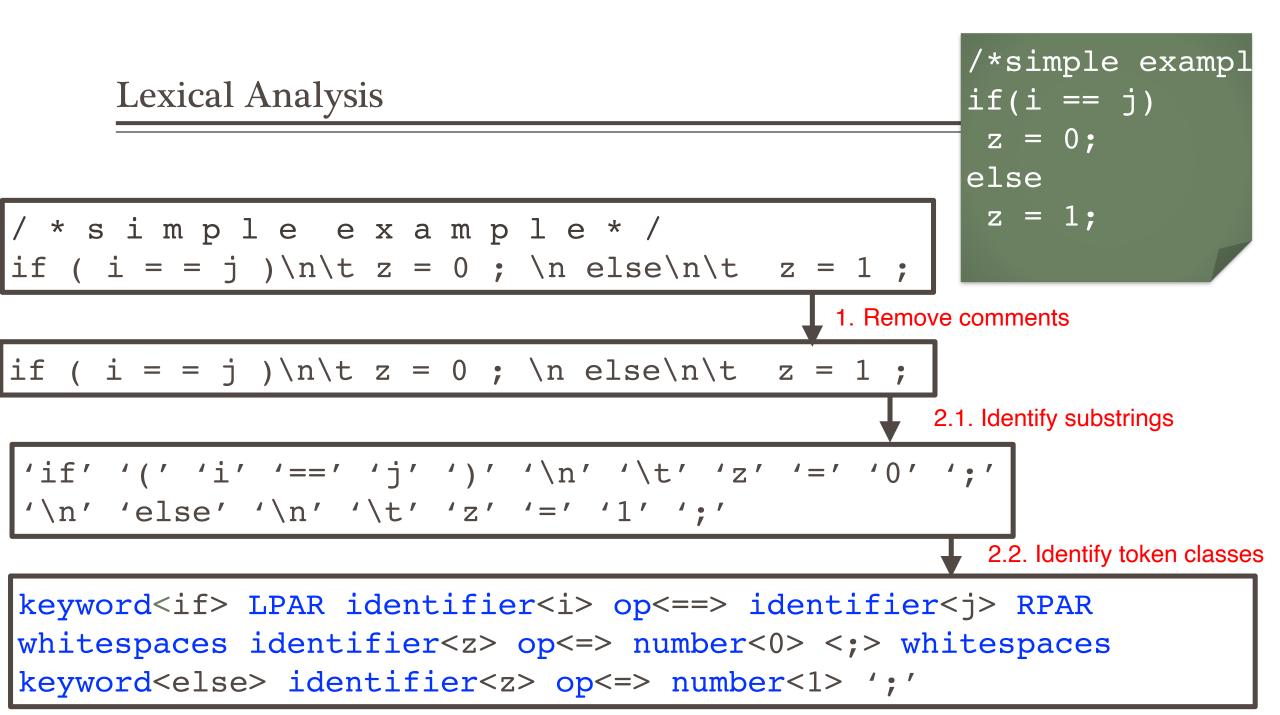
These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Structure of a Typical Compiler



Input to Compiler





keyword<if> LPAR identifier<i> op<==> identifier<j> RPAR whitespaces identifier<z> op<=> number<0> <;> whitespaces keyword<else> identifier<z> op<=> number<1> ';'

• keywords, identifiers, LPAR, RPAR, number, etc.

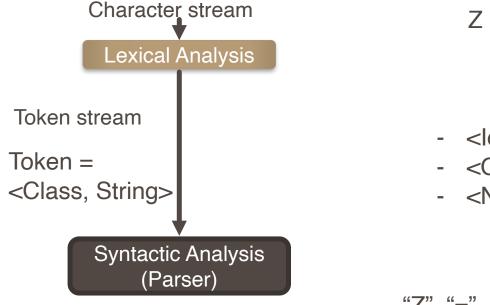
- Each class corresponds to a set of strings
- Identifier
 - Strings are letters or digits, starting with a letter
 - Eg:
- Numbers:
 - A non-empty strings of digits
 - Eg:
- Keywords
 - A fixed set of <u>reserved words</u>
 - Eg:
- Whitespace
 - A non-empty sequence of blanks, newlines, and tabs

Different Language can treat same symbol differently

- WhiteSpace in Python:
 - Except at the beginning of a logical line or in string literals, the whitespace characters space and tab can be used interchangeably to separate tokens.
 - Whitespace is needed between two tokens only if their concatenation could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).
- Whitespace in C Like Language:
 - Blanks, horizontal and vertical tabs, newlines formfeeds, and comments as described below (collectively, "white space") are ignored except as they separate tokens.

Lexical Analysis (Example)

- Classify program substrings according to roles (token class)
- Communicate tokens to parser



- <ld, "Z">
- <0p, "=">
- <Numbers, "1">

"Z", "=", "1" are called lexemes (an instance of the corr. token class)

Lexical Analysis: HTML Examples

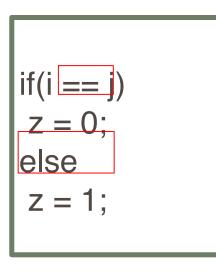
Here is a photo of my house

<text, "Here is a photo of"> <nodestart, b> <text, "my house"> <nodeend, b>

Exercise

x = p; while (x < 100) { x++ ; }

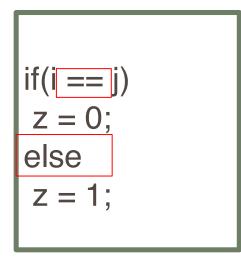
Exercise



==/=?

Keyword/Identifier?

- Lexical analysis tries to partition the input string into the logical units of the language. This is implemented by reading left to right. "scanning", recognizing one token at a time.
- "Lookahead" is required to decide where one token ends and the next token begins.



==/=?

Keyword/Identifier?

- Usually, given the pattern describing the lexemes of a token, it is relatively simple to recognize matching lexemes when they occur on the input.
- However, in some languages, it is not immediately apparent when we have seen an instance of a lexeme corresponding to a token.

FORTRAN RULE: White Space is insignificant: VA R1 == VAR1 DO 5 I = 1,25 DO 5 I = 1.25

- Lexical analysis may require to "look ahead" to resolve ambiguity.
 - Look ahead complicates the design of lexical analysis
 - Minimize the amount of look ahead

Lexical Analysis: Examples

- C++ template Syntax:
 - Foo<Bar>
- C++ stream Syntax:
 - cin >> var
- Ambiguity
 - Foo<Bar<Bar>>>
 - cin >> var

- A lexical error is any input that can be rejected by the lexer.
- When a token cannot be recognized by the rules defined token class
 - Example: '@' is rejected as a lexical error for identifiers in Java (it's reserved).

- Recovery
 - Panic Mode: delete successive characters until a valid token is found
 - Delete one character from remaining inputs
 - Insert one character in the remaining input
 - Replace / transpose

- Is fi lexical error?
 - It can be a function identifier
 - It is quite difficult for a lexical analyzer to decide whether fi is an error without further information

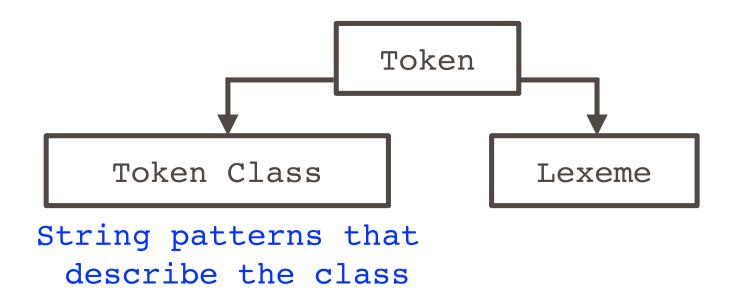
Summary So Far

The goal of Lexical Analysis

- Partition the input string to lexeme
- Identify the token class of each lexeme

- Left-to-right scan => look ahead may require
 - In reality, lookahead is always needed
 - Our goal is to minimize thee amount of lookahead

Recognizing Token Class



- How to describe the string patterns?
 - i.e., which set of strings belongs to which token class?
 - Use regular languages
- Use Regular Expressions to define Regular Languages.

REGULAR LANGUAGES

Regular Expressions

- Single character
 - 'C' = {"C"}
- Epsilon
 - $\mathcal{E} = \{```\}$
- Union
 - $A + B = \{a \mid a \in A\} \cup \{b \mid b \in B\}$
- Concatenation
 - $AB = \{ab \mid a \in A^{\wedge} b \in B\}$
- Iteration (Kleene closure)

$$A^* = \bigcup_{i>=0} A^i = A^0 A^1 \dots A^i = A \dots A$$
 (i times)

$$A^+ = \bigcup_{i>0} A^i$$
 (no empty string is allowed)

- Def: The regular expressions over ${\boldsymbol \Sigma}$ are the smallest set of expressions including

 $R = \varepsilon$ $I \text{ 'c', 'c' } \varepsilon \Sigma$ I R + R I RR I RR

- $\Sigma = \{p,q\}$
 - q*
 - (p+q)q
 - p*+q*
 - (p+q)*
- There can be many ways to write an expression

Choose the regular languages that are equivalent to the given regular language: $(p + q)^*q(p + q)^*$

```
A. (pq + qq)^{*}(p + q)^{*}
B. (p + q)^{*}(qp + qq + q)(p + q)^{*}
C. (q + p)^{*}q(q + p)^{*}
D. (p + q)^{*}(p + q)(p + q)^{*}
```

- Def: Let Σ be a set of character (alphabet). A language over Σ is a set of strings of characters drawn from Σ .
 - Regular languages is a formal language
- Alphabet = English character, Language = English Language
 Is it formal language?
- Alphabet = ASCII, Language = C Language

Formal Language

$$c' = \{ c'' \}$$

$$\varepsilon = \{ c''' \}$$

$$A + B = \{ a \mid a \in A \} \cup \{ b \mid b \in B \}$$

$$AB = \{ ab \mid a \in A \land b \in B \}$$

$$A^* = \bigcup_{i \ge =0} A^i$$
set

Formal Language

$$L(`c') = \{``C''\}$$

$$L(\varepsilon) = \{``''\}$$

$$L(A + B) = \{a \mid a \in L(A)\} \cup \{b \mid b \in L(B)\}$$

$$L(AB) = \{ab \mid a \in L(A) \land b \in L(B)\}$$

$$L(A^*) = \bigcup_{i \ge =0} L(A^i)$$
set

- L: Expressions -> Set of strings
- Meaning function L maps syntax to semantics
- Mapping is many to one
- Q: One to Many?

Formal Language

$$L(`c') = \{``C''\}$$

$$L(\varepsilon) = \{``''\}$$

$$L(A + B) = \{a \mid a \in L(A)\} \cup \{b \mid b \in L(B)\}$$

$$L(AB) = \{ab \mid a \in L(A) \land b \in L(B)\}$$

$$L(A^*) = \bigcup_{i \ge =0} L(A^i)$$
set

- L: Expressions -> Set of strings
- Meaning function L maps syntax to semantics
- Mapping is many to one
- Never one to many

- Keywords: "if" or "else" or "then" or "for"
 - Regular expression = 'i' 'f' + 'e' 'l' 's' 'e'

= 'if' + 'else' + 'then'

- Numbers: a non-empty string of digits
 - digit = '1'+'0'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
 - digit*
 - How to enforce non-empty string?
 - digit digit* = digit+

- Identifier: strings of letters or digits, starting with a letter
 - letter = 'a' + 'b' + 'c' + + 'z' + 'A' + 'B' + + 'Z'
 = [a-zA-Z]
 - letter (letter + digit)*
- Whitespace: a non-empty sequence of blanks, newline, and tabs
 - (' ' + '\n' + '\t')+

- digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
- digits = digit+
- opt_fraction = ('.' digits) + ε = ('.' digits)?
- opt_exponent = ('E' ('+' + '-' + ε) digits) + ε

= ('E' ('+' + '-')? digits)?

num = digits opt_fraction opt_exponent

Common Regular Expression

- At least one $A^+ \equiv AA^*$
- Union: $A | B \equiv A + B$
- Option: $A? \equiv A + \varepsilon$
- Range: 'a' + ... + 'z' = [a-z]
- Excluded range: complement of $[a-z] \equiv [^a-z]$

Regular Expressions specify regular languages

- Five constructs
 - Two base expression
 - Empty and 1-character string

- Three compound expressions
 - Union, Concatenation, Iteration

- 1. Write a regex for the lexemes of each token class
 - Number = digit+
 - Keywords = 'if' + 'else' + 'while' + 'for' + 'return'...
 - Identifiers = letter (letter + digit)*
 - LPAR = '('
 - RPAR=')'

- 2. Construct R, matching all lexemes for all tokens
 - R = Number + Keywords + Identifiers + ...
 - $= R_1 + R_2 + R_3 + \dots$
- 3. Let input be $x_q \dots x_n$.
 - For $1 \le i \le n$, check $x_1 \dots x_i \in L(R)$
- 4. If successful, then we know that
 - $x_1...x_i \in L(R_j)$ for some j
- 5. Remove $x_1 \dots x_i$ from input and go to step 3.

Lexical Specification of a language

- How much input is used?
 - $x_1...x_i \in L(R)$
 - $\mathbf{x}_1 \dots \mathbf{x}_j \in L(\mathbf{R}), i \neq j$
 - Which one do we want? (e.g., == or =)
 - Maximal munch: always choose the longer one
- Which token is used if more than one matches?
 - $x_1...x_i \in L(R)$ where $R = R_1 + R_2 + ... + R_n$
 - $x_1...x_i \in L(R_m)$
 - $\mathbf{x}_1 \dots \mathbf{x}_i \in L(\mathbf{R}_n), \mathbf{m} \neq n$
 - Eg: Keywords = 'if', Identifier = letter (letter + digit)*, if matches both
 - Keyword has higher priority
 - Rule of Thumb: Choose the one listed first

Lexical Specification of a language

• What if no rule matches?

- $x_1...x_i \notin L(R)$... compiler typically tries to avoid this scenario
- Error = [all strings not in the lexical spec]
- Put it in last in priority

Regular Expressions are concise notations for the string patterns

Use in lexical analysis with some extensions

- To resolve ambiguities
- To handle errors

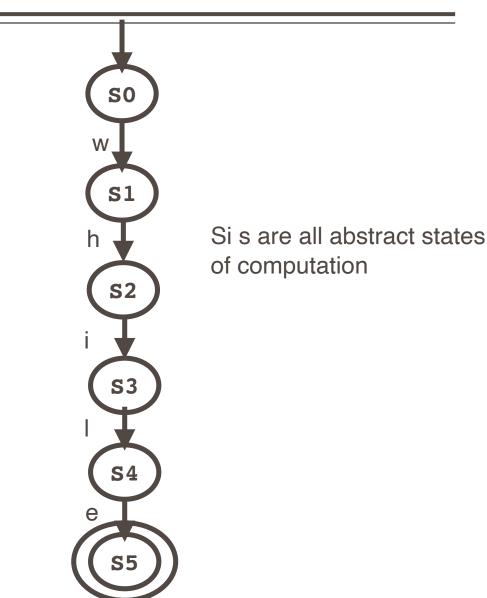
Implementation?

• We will study next

Recognizing Lexemes: a simple character by character formulation

Recognize word while

```
c=NextChar();
if(c!='w') { /*do something*/}
else {
  c=NextChar();
  if(c!='h') { /*do something*/}
  else {
    c=NextChar();
    if(c!='i'){ /*do something*/}
    else {
      c=NextChar();
      if(c!='l'){ /*do something*/}
      else{
        c=NextChar();
        if(c!='e'){ /*do something*/}
        else{
          /*report success*/
        }
```



Recognizing Lexemes

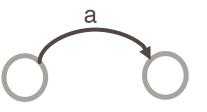
• x = 1

A Formalism of Recognizer

• A finite automaton consists of

- An input Alphabet: Σ
- A finite set of states: S
- A start state: ——
- A set of accepting states: $F \subseteq S$

• A set of transitions state: state1 \xrightarrow{input} state2



A Formalism of Recognizer

- A finite automaton consists of
 - An input Alphabet: Σ
 - A finite set of states: S
 - A start state: S0 –
 - A set of accepting states: $F \subseteq S$
- A set of transitions state δ : state1 \xrightarrow{input} state2

a

 $S=\{S_{0}, S_{1}, S_{2}, S_{3}\}$ $\Sigma = \{x, =, 1\}$ $\delta = \{S_{0} \xrightarrow{x} S_{1}, S_{0} \xrightarrow{=} S_{2}, S_{0} \xrightarrow{1} S_{3}\}$ $S_{0} = S_{0}$ $F = \{S_{1}, S_{2}, S_{3}\}$

```
c=NextChar();
state=S_0
while(c!='eof' and state!=S_{err}) {
   state=\delta(state, c)
   c=NextChar();
}
```

```
if(state \in F)
    /* report acceptance */
else
```

```
/* report failure */
```

 $S=\{S_{0}, S_{1}, S_{2}, S_{3}\}$ $\Sigma = \{x, =, 1\}$ $\delta = \{S_{0} \xrightarrow{x} S_{1}, S_{0} \xrightarrow{+} S_{2}, S_{0} \xrightarrow{1} S_{3}\}$ $S_{0} = S_{0}$ $F = \{S_{1}, S_{2}, S_{3}\}$

Show simple state transition of : e = m * c ** 2

$$S=\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\}$$

$$\Sigma = \{e, m, c, *, **, 2, =\}$$

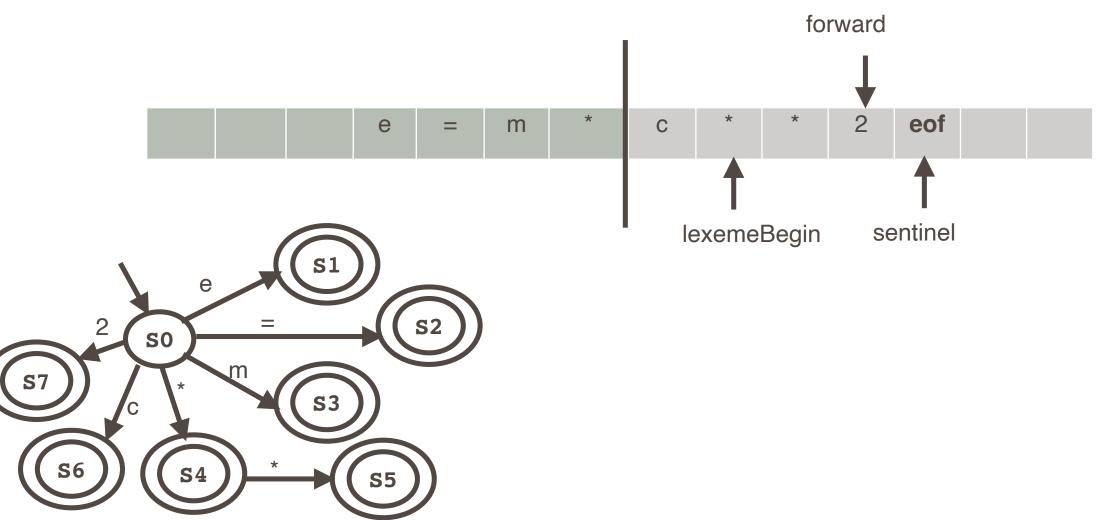
$$\delta = \{S_{0} \stackrel{e}{\rightarrow} S_{1}, S_{0} \stackrel{=}{\rightarrow} S_{2}, S_{0} \stackrel{m}{\rightarrow} S_{3}, S_{0} \stackrel{*}{\rightarrow} S_{4}, S_{4} \stackrel{*}{\rightarrow} S_{5}, S_{0} \stackrel{c}{\rightarrow} S_{6}, S_{0} \stackrel{2}{\rightarrow} S_{7}\}$$

$$S_{0} = S_{0}$$

$$F = \{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\}$$

Input Buffering

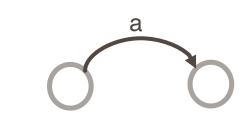
• e = m * c ** 2m



Finite Automata

- Regular Expression = specification
- Finite Automata = implementation

- A finite automaton consists of
 - An input Alphabet: Σ
 - A finite set of states: S
 - A start state: n
 - A set of accepting states: $F \subseteq S$
 - A set of transitions state: state1 \xrightarrow{input} state2



Transition

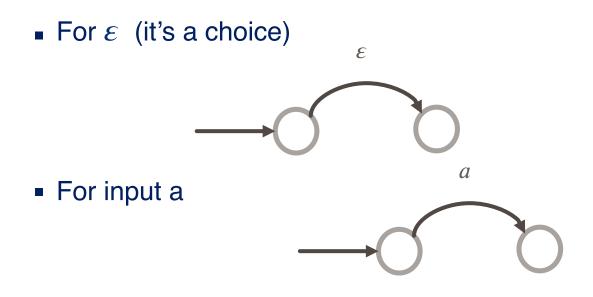
- s1 \xrightarrow{a} s2 (state s1 on input a goes to state s2)
- If end of the input and in final state, the input is accepted
- Otherwise reject

Language of FA = set of strings accepted by that FA

Example Automata

• a finite automaton that accepts only "1"

• A finite automaton that accepting any number of "1" followed by "0"

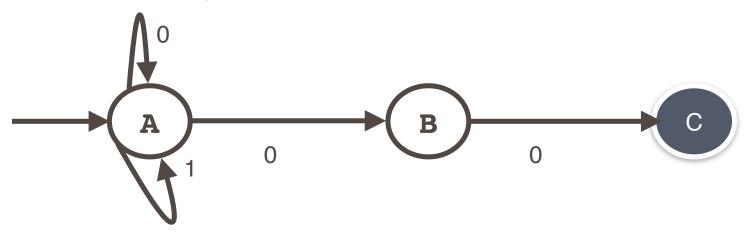


Finite Automata

- Deterministic Finite Automata (DFA)
 - One transition per input per state
 - No *ε*-moves
 - Takes only one path through the state graph
- Nondeterministic Finite Automata (NFA)
 - Can have multiple transitions for one input in a given state
 - Can have *ε*-moves
 - Can choose which path to take
 - An NFA accepts if some of these paths lead to accepting state at the end of input.

Finite Automata

An NFA can get into multiple states

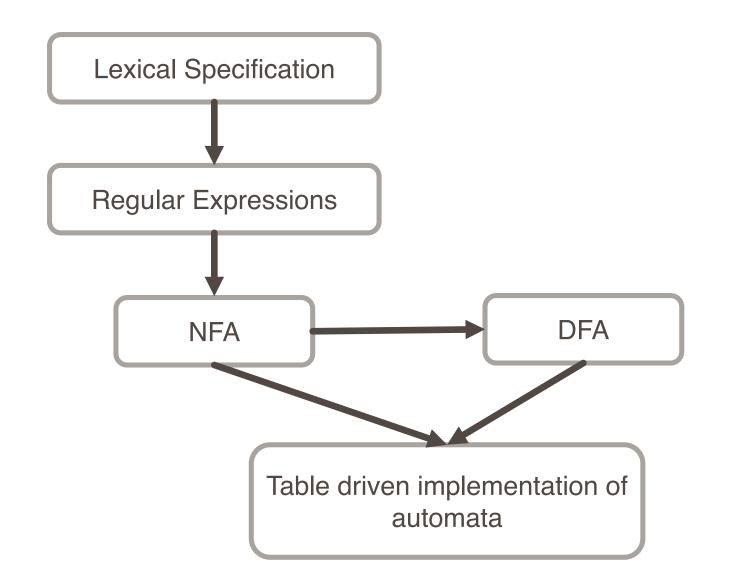


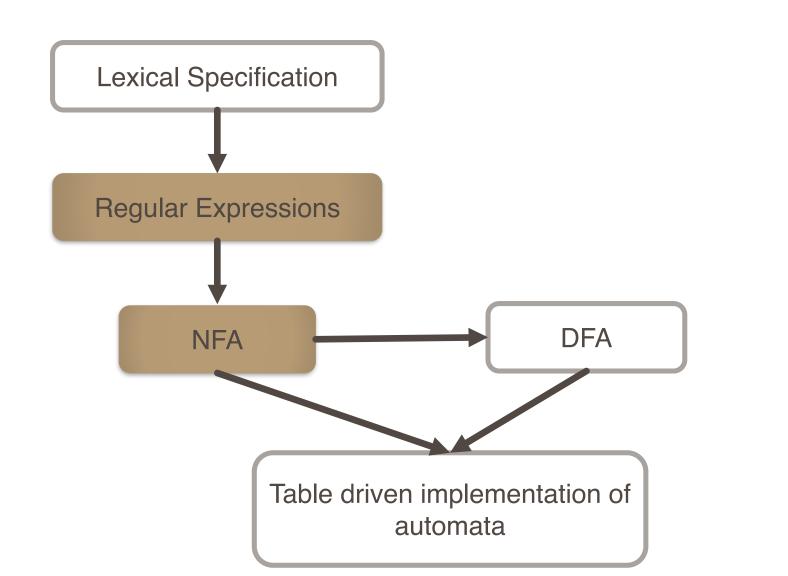
- Input: 1 0 0
- Output: {A}. {A,B} {A,B,C}

• NFAs and DFAs recognize the same set of regular languages

- DFAs are faster to execute
 - No choices to consider

• NFAs are, in general, small

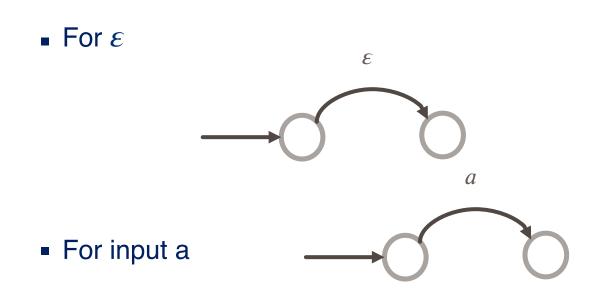




• For each kind of regex, define an equivalent NFA

• Notation: NFA for regex M

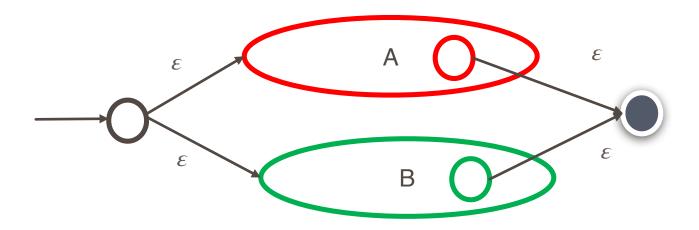
Regular Expression to NFA



Regular Expression to NFA

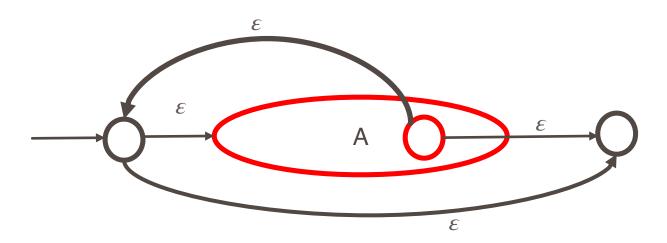
For AB

• For A + B

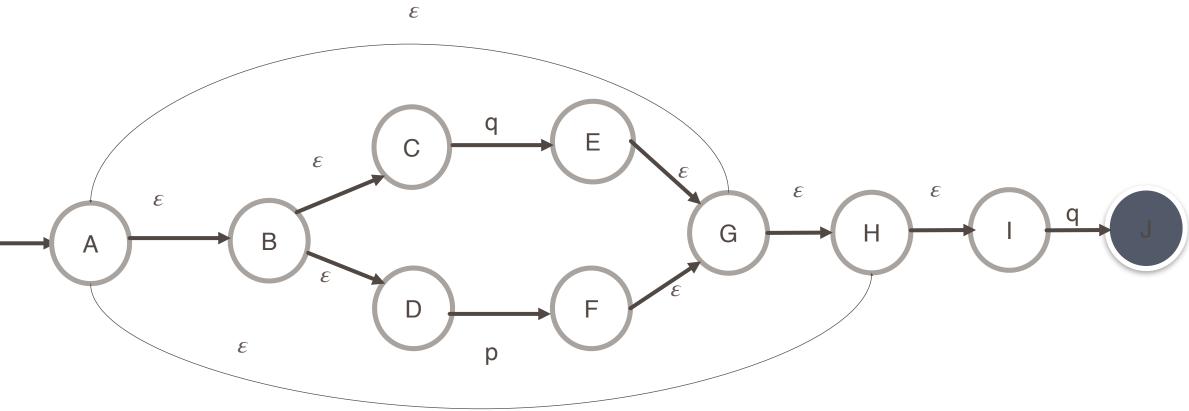


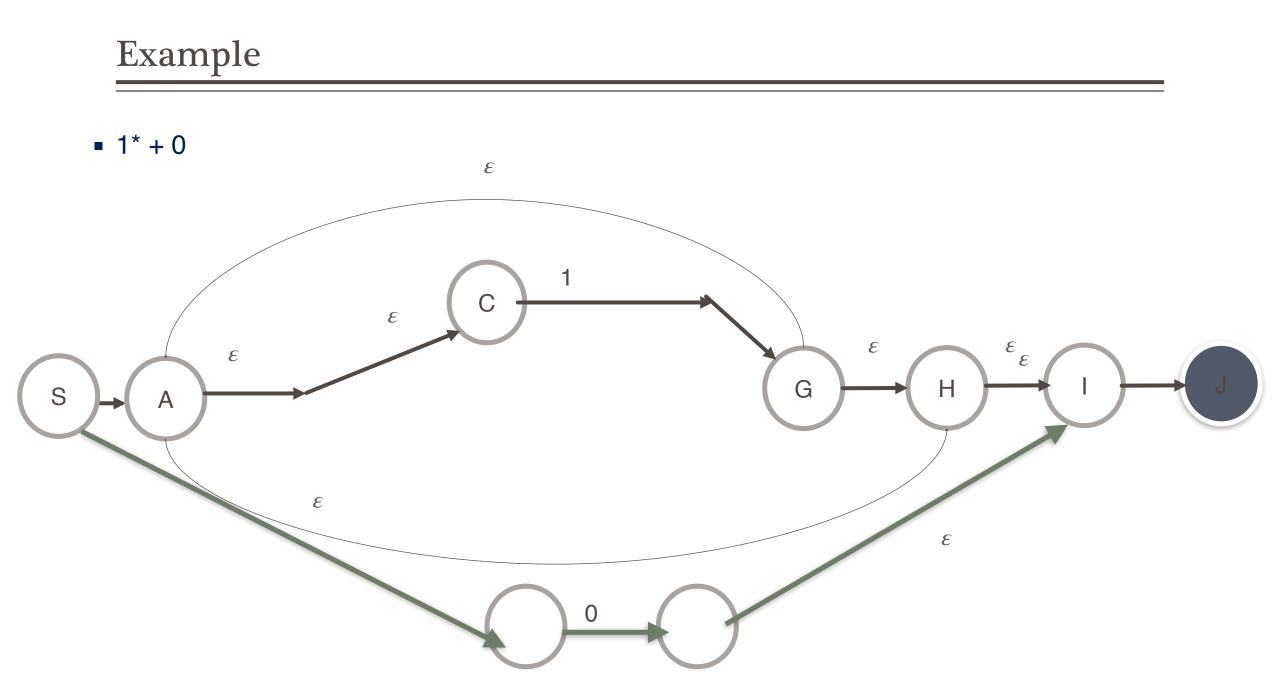
Regular Expression to NFA

For A*

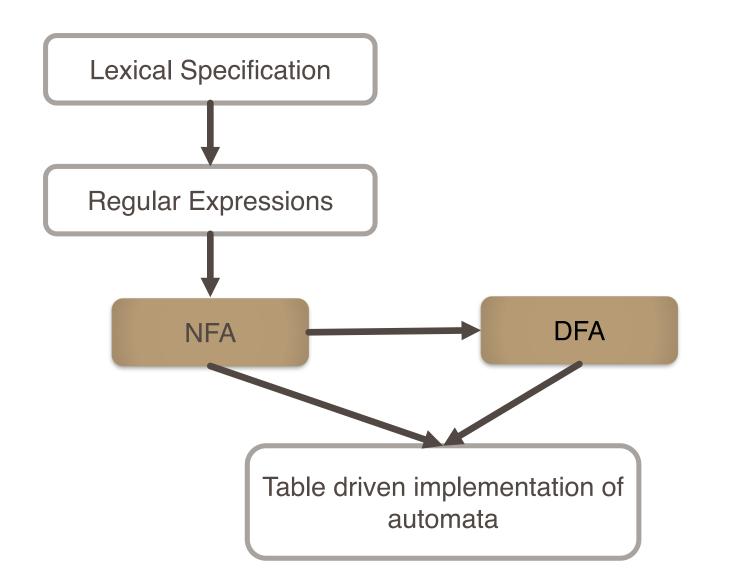


■ (q+p)*q

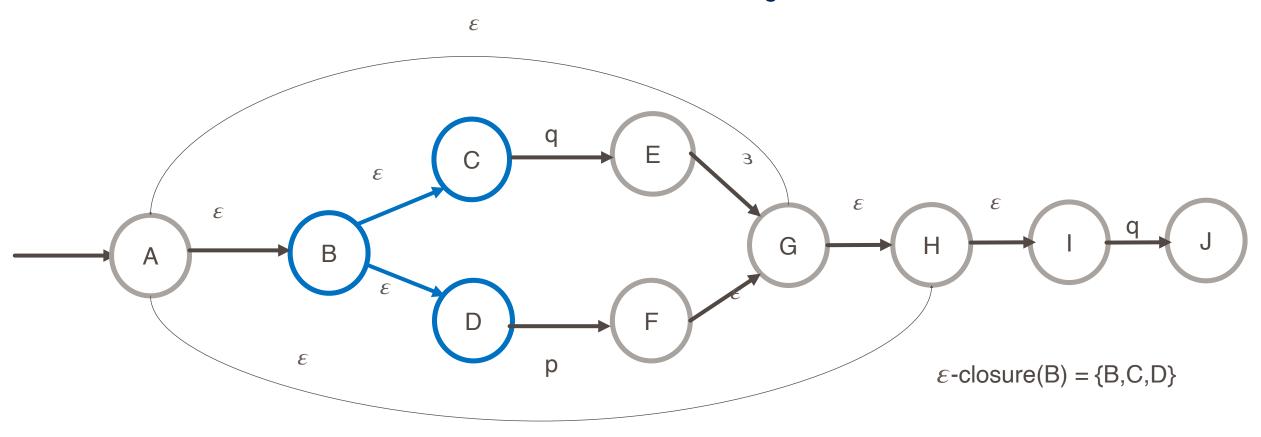




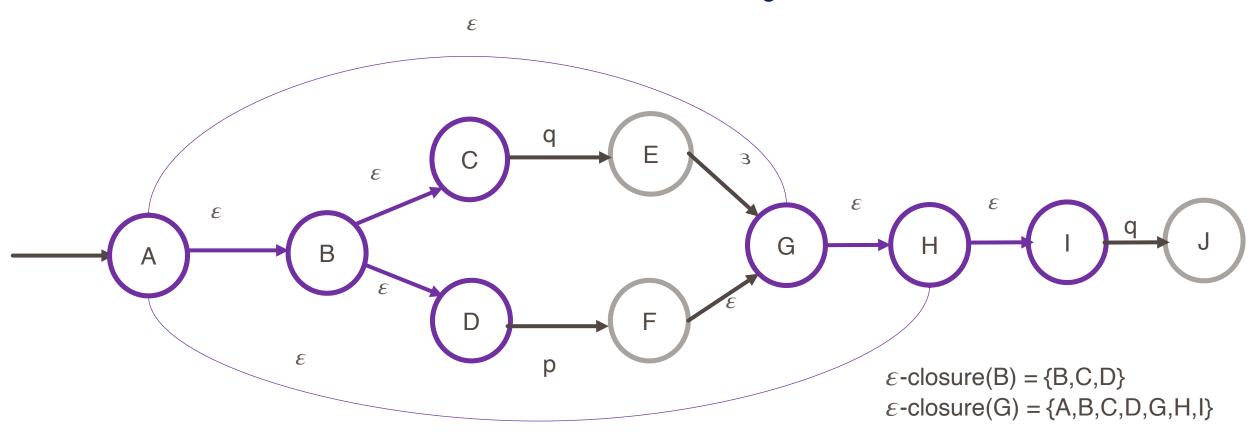
Choose the NFA that accepts the regular expression: $1^* + 0$.



• ε -closure of a state is all the state I can reach following ε move.



• ε -closure of a state is all the state I can reach following ε move.



<u>NFA</u>

- States S
- Start s
- Final state F
- Transition state

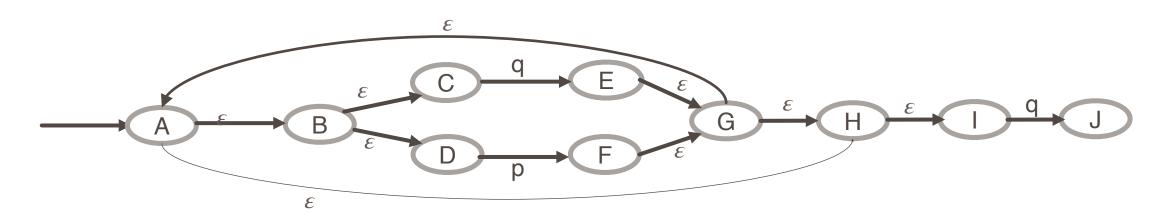
$$a(X) = \{ y \mid x \in X \land x \xrightarrow{a} y \}$$

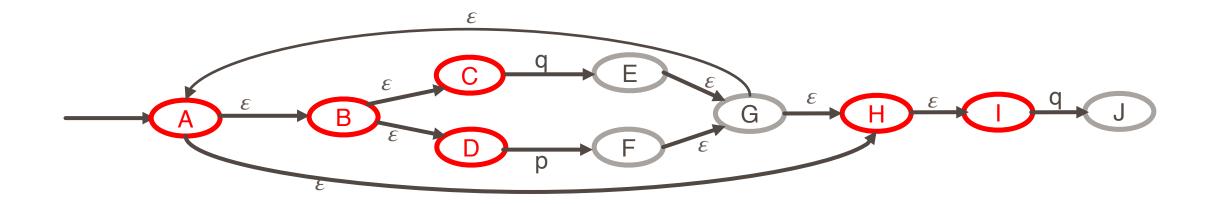
• ε - closure

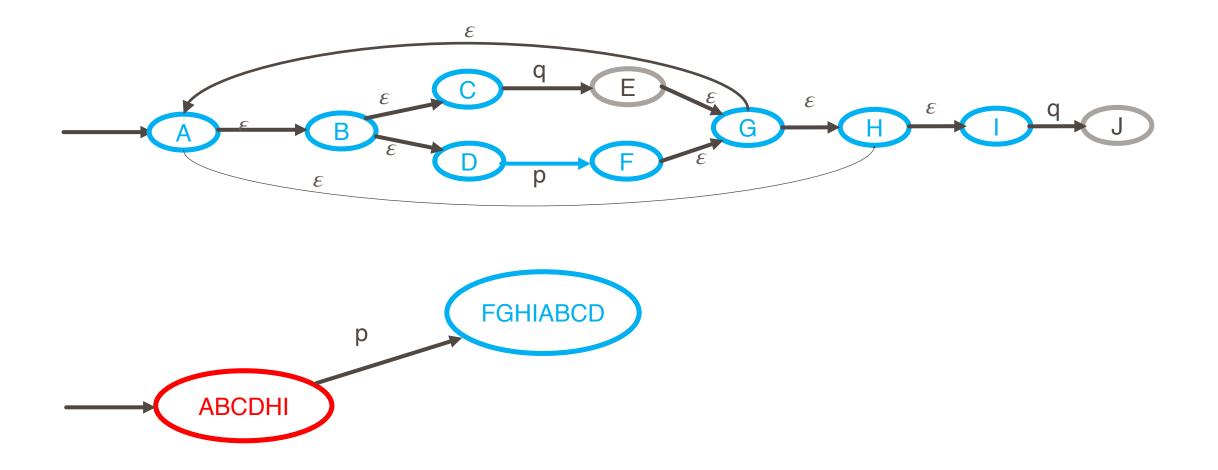
<u>DFA</u>

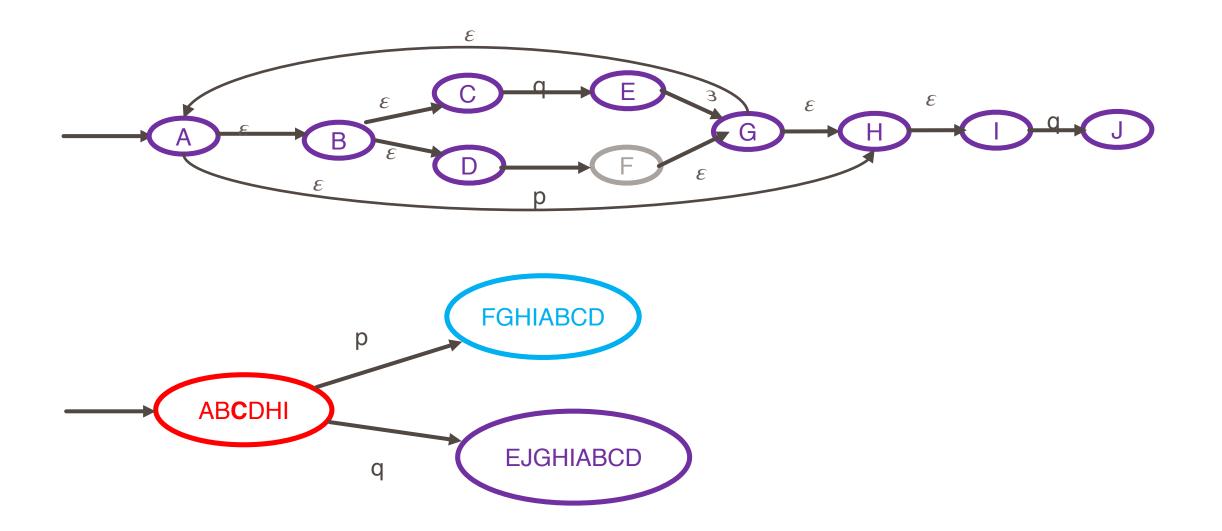
- States will be all possible subset of S except empty set
- Start state = $\varepsilon closure(s)$
- Final state $\{X \mid X \cap F != \emptyset\}$

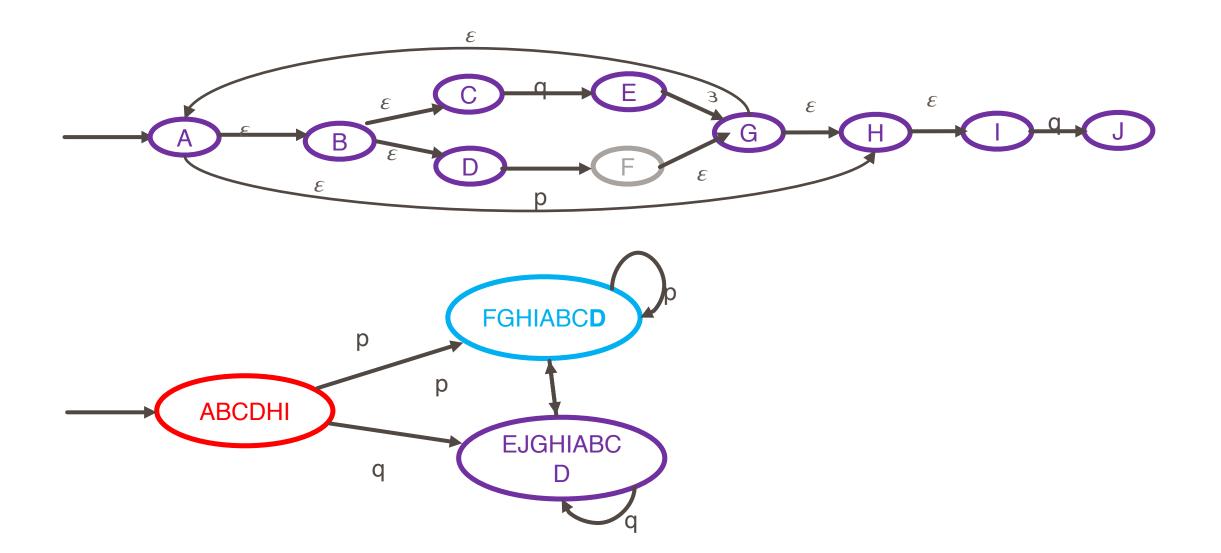
•
$$X \xrightarrow{a} Y$$
 if
• $Y = \varepsilon - closure(a(X))$

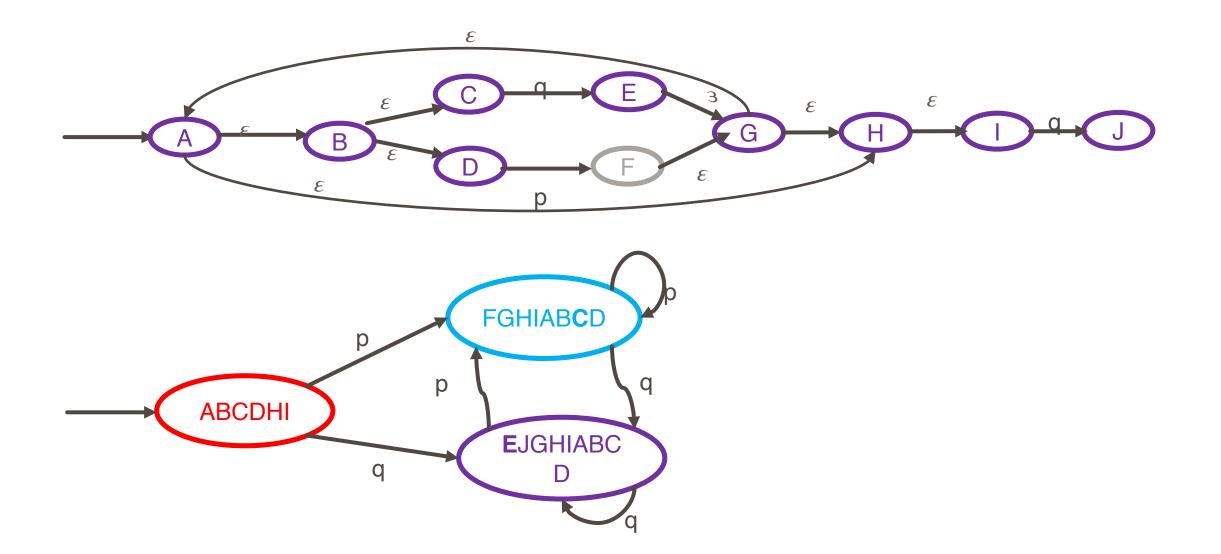




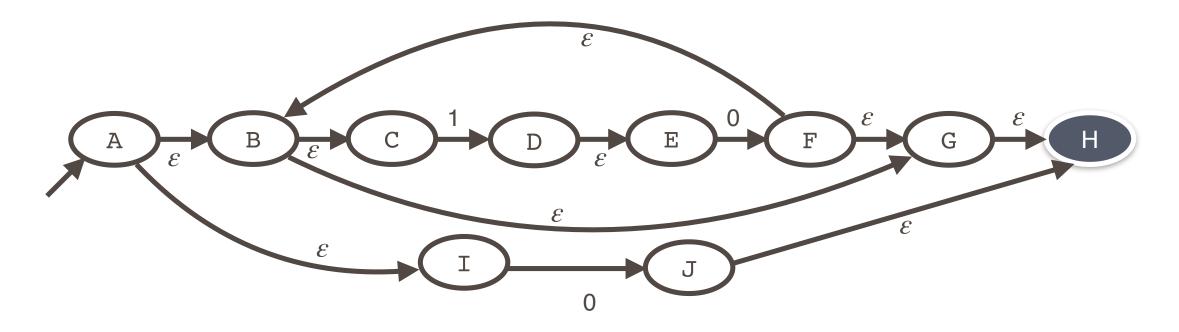




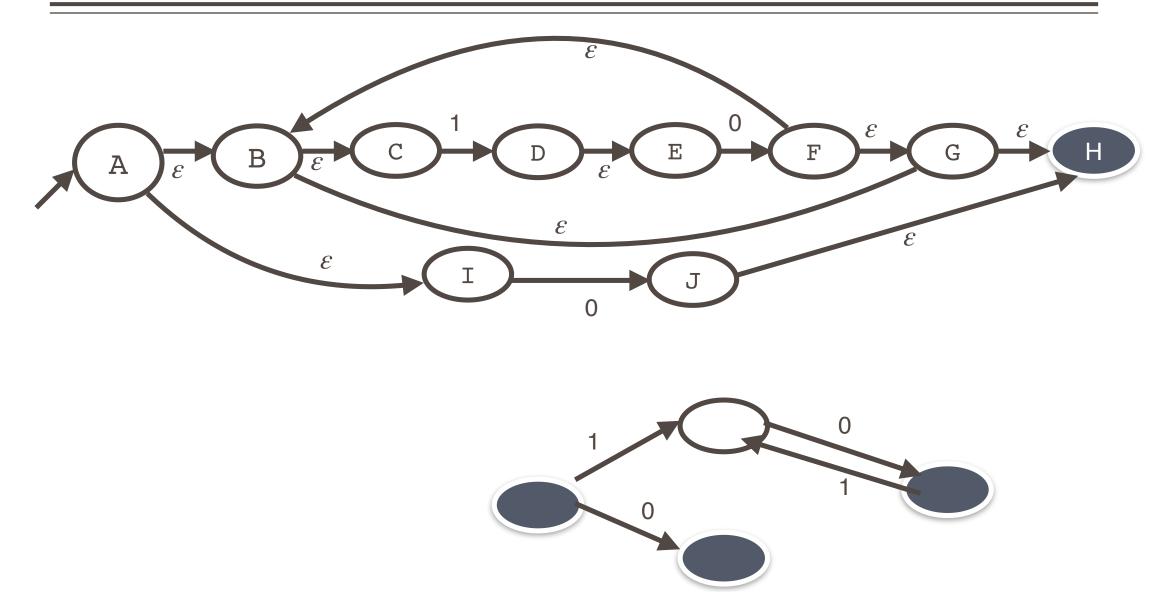


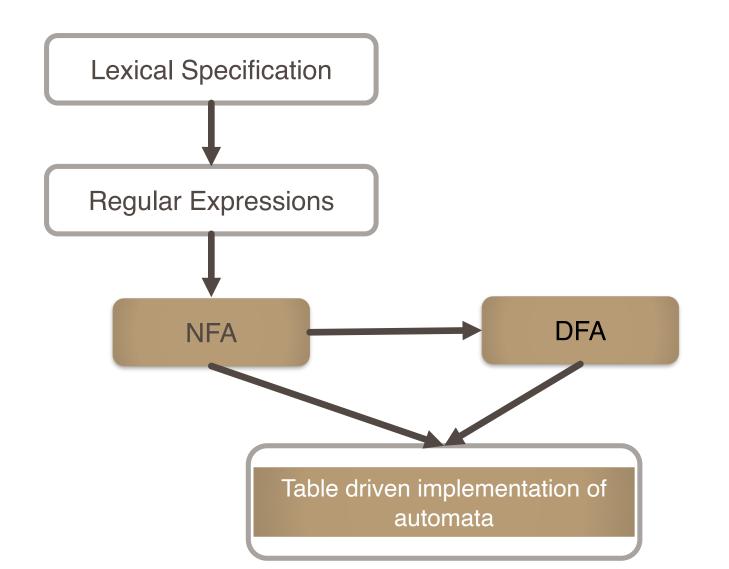


Example: NFA to DFA



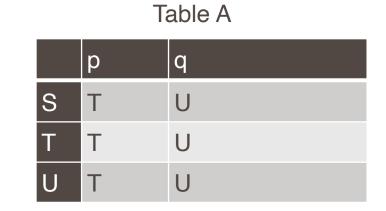
Example: NFA to DFA

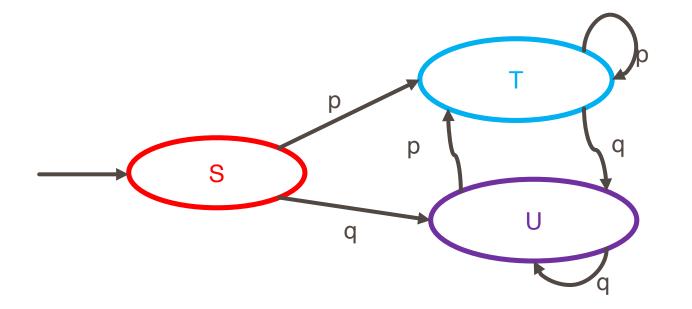




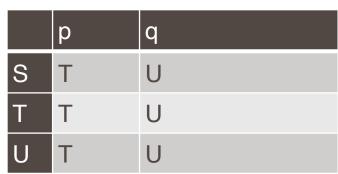
• A DFA can be implemented by a 2D table T

- One dimension is states
- Another dimension is input symbol
- For every transition $s_i \rightarrow s_k$: define T[i,a] = k

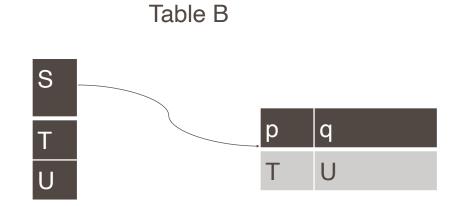




```
i = p;
state = 0;
while(input[i]) {
    state = A[state,input[i]];
    i++;
}
```

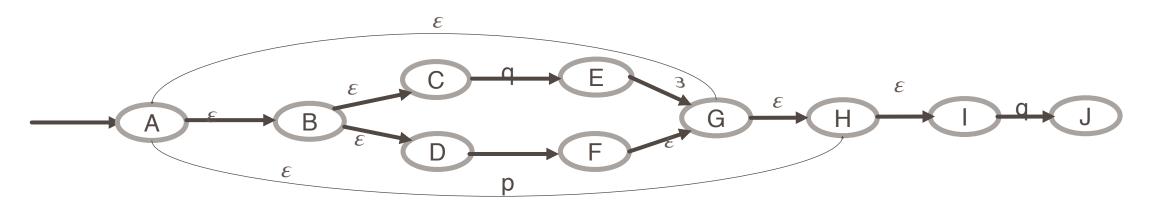


A lot of duplicate entries



Compact but need an extra indirection - Inner loop will be slower

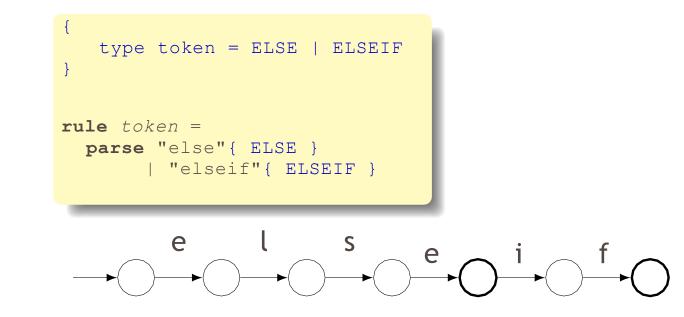
Table A



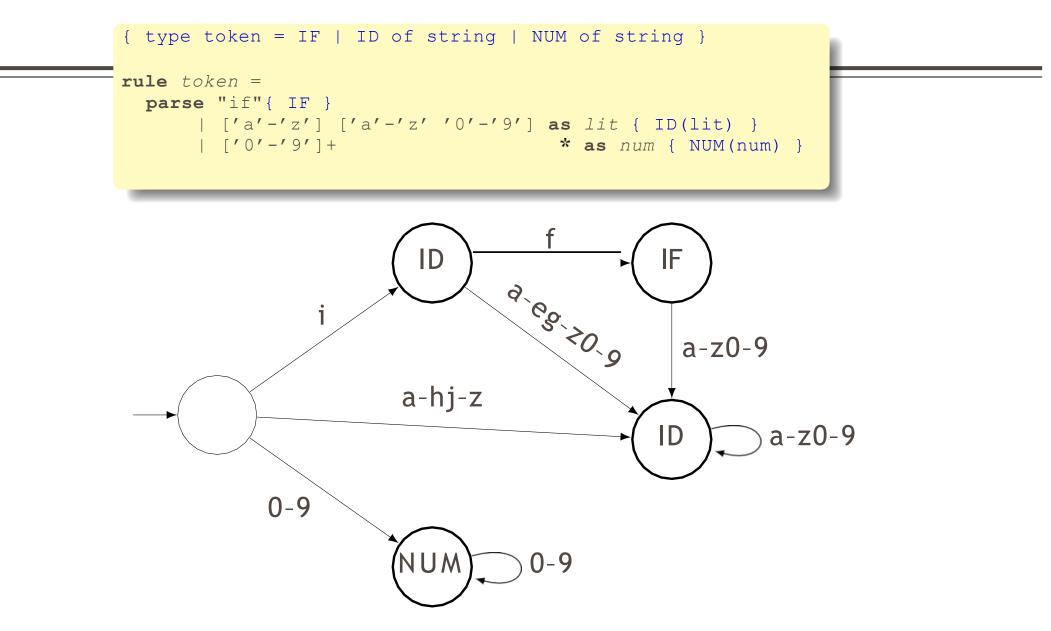
	р	q	
A			{B,H}
В			{C,D}
С		{E}	

Deal with set of states rather than single state- \rightarrow inner loop is complicated

Deterministic Finite Automata: Example



Deterministic Finite Automata

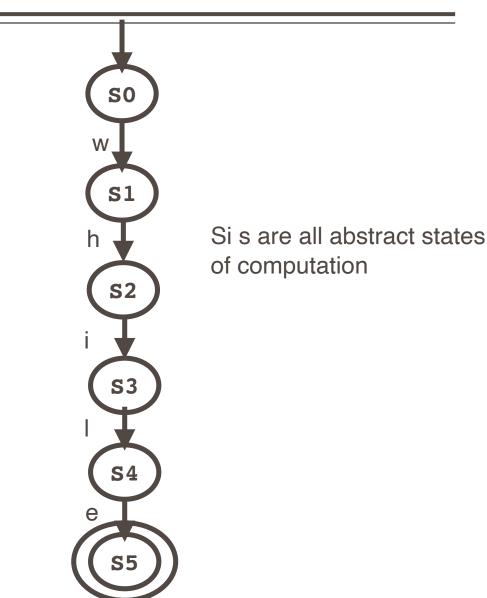


PROGRAMMING ASSIGNMENT1

Recognizing Lexemes: a simple character by character formulation

Recognize word while

```
c=NextChar();
if(c!='w') { /*do something*/}
else {
  c=NextChar();
  if(c!='h') { /*do something*/}
  else {
    c=NextChar();
    if(c!='i'){ /*do something*/}
    else {
      c=NextChar();
      if(c!='l'){ /*do something*/}
      else{
        c=NextChar();
        if(c!='e'){ /*do something*/}
        else{
          /*report success*/
        }
```



Recognizing Lexemes

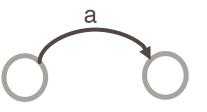
• x = 1

A Formalism of Recognizer

• A finite automaton consists of

- An input Alphabet: Σ
- A finite set of states: S
- A start state: ——
- A set of accepting states: $\mathsf{F}\subseteq\mathsf{S}$

• A set of transitions state: state1 \xrightarrow{input} state2



A Formalism of Recognizer

- A finite automaton consists of
 - An input Alphabet: Σ
 - A finite set of states: S
 - A start state: S0 –
 - A set of accepting states: $F \subseteq S$
- A set of transitions state δ : state1 \xrightarrow{input} state2

a

 $S=\{S_{0}, S_{1}, S_{2}, S_{3}\}$ $\Sigma = \{x, =, 1\}$ $\delta = \{S_{0} \xrightarrow{x} S_{1}, S_{0} \xrightarrow{=} S_{2}, S_{0} \xrightarrow{1} S_{3}\}$ $S_{0} = S_{0}$ $F = \{S_{1}, S_{2}, S_{3}\}$

```
c=NextChar();
state=S_0
while(c!='eof' and state!=S_{err}) {
   state=\delta(state, c)
   c=NextChar();
}
```

```
if(state \in F)
    /* report acceptance */
else
```

```
/* report failure */
```

 $S=\{S_{0}, S_{1}, S_{2}, S_{3}\}$ $\Sigma = \{x, =, 1\}$ $\delta = \{S_{0} \xrightarrow{x} S_{1}, S_{0} \xrightarrow{+} S_{2}, S_{0} \xrightarrow{1} S_{3}\}$ $S_{0} = S_{0}$ $F = \{S_{1}, S_{2}, S_{3}\}$

Show simple state transition of : e = m * c ** 2

$$S=\{S_{0}, S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\}$$

$$\Sigma = \{e, m, c, *, **, 2, =\}$$

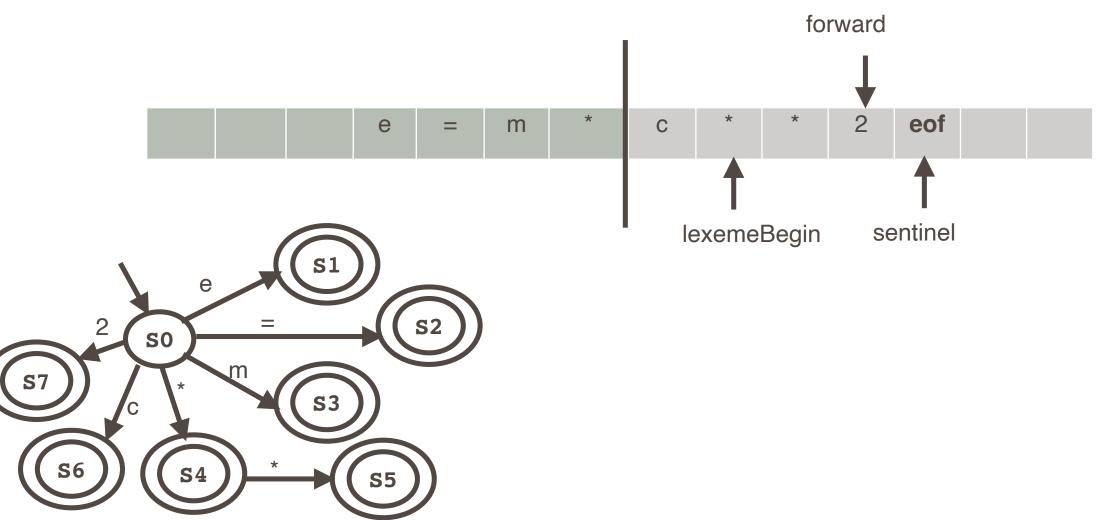
$$\delta = \{S_{0} \stackrel{e}{\rightarrow} S_{1}, S_{0} \stackrel{=}{\rightarrow} S_{2}, S_{0} \stackrel{m}{\rightarrow} S_{3}, S_{0} \stackrel{*}{\rightarrow} S_{4}, S_{4} \stackrel{*}{\rightarrow} S_{5}, S_{0} \stackrel{c}{\rightarrow} S_{6}, S_{0} \stackrel{2}{\rightarrow} S_{7}\}$$

$$S_{0} = S_{0}$$

$$F = \{S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, S_{6}, S_{7}\}$$

Input Buffering

• e = m * c ** 2m



• Can we run out of buffer space?