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Programming Languages & Translators 

These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)



▪ <id, x> <op, *> <op, %>


▪ Is it a valid token stream in C language?


▪ Is it a valid statement in C language?



Intro to Parsing

▪ Not every strings of tokens are 
valid


▪ Parser must distinguish between 
valid and invalid token strings. 


▪We need

▪ A Language: to describe what is valid 

string?
▪ A method: to determine membership 

of inputs in this language.
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Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees



Intro to Parsing

▪ Input: if(x==y) 1 else 2;


▪ Parser Input (Lexical Input):


  KEY(IF) ‘(‘ ID(x) OP(‘==‘) ‘)’ INT(1) KEY(ELSE) INT(2) ‘;’


▪ Parser Output IF-THEN-ELSE

==

ID ID

=

INT

=

INT



Intro to Parsing

▪ Not every strings of tokens are 
valid


▪ Parser must distinguish between 
valid and invalid token strings. 


▪We need

▪ A Language: to describe what is valid 

string?

▪ Context Free Grammar

▪ Capture Language Syntax

▪ A method: to determine membership 
of inputs in this language.

Lexical Analysis

Parser

Semantic Analysis

Code Generation

Character stream

Token stream

Syntax trees

Syntax trees



Context Free Grammar

▪ A CFG consists of

▪ A set of terminal T
▪ A set of non-terminal N
▪ A start symbol S (S  N)
▪ A set of production rules
▪ X -> Y1…..YN

▪ X  N
▪

▪ Ex: S -> ( S ) | 
▪ N = {S}

▪ T = { ( , ) , }

𝜖

𝜖
Yi ϵ {N, T, ε}

𝜀

𝜀



Context Free Grammar

1. Begin with a string with only the start symbol S


2. Replace a non-terminal X with in the string by the RHS of some production rule:                 


 X->Y1…..Yn


3. Repeat 2 again and again until there are no non-terminals


X1……Xi X Xi+1 …. Xn -> X1……Xi Y1…..Yk Xi+1 …. Xn 


For the production rule X -> Y1…..Yk


                                

α0 → α1 → α2 → α3 . . . → αn

α0
* αn, n ≥ 0



Context Free Grammar

▪ Let G be a CFG with start symbol S. Then the language L(G) of G is:

{a1 . . . ai . . . an |∀iai ∈ T ∧ S * a1 . . . ai . . . an}



Context Free Grammar

▪ There are no rules to replace terminals.


▪ Once generated, terminals are permanent


▪ Terminals ought to be tokens of programming languages


▪ Context-free grammars are a natural notation for this recursive structure



Languages and Automata

▪ Formal languages are very important in programming languages 

▪ Regular Languages

▪ Weakest formal languages that are widely used

▪ Many applications


▪ Many Languages are not regular



1

1

0

0

Automata that accept odd numbers of 1

How many 1s it has accepted?

Automata do not have any memory

- Only solution is duplicate state



Intro to Parsing

▪ Regular Languages

▪ Weakest formal languages that are widely used

▪ Many applications


▪ Consider the language {(i )i | i  0}

▪ (), (( )), ((( )))

▪ ((1 + 2) * 3)


▪ Nesting structures 

▪ if ..  if..  else.. else..

≥
Regular languages 

cannot handle well



CFG: Simple Arithmetic expression

E ! E + E

   | E * E

   | ( E )

   | id


Languages can be generated: id, ( id ), ( id + id ) * id, …



CFG: Exercise

Some Valid Strings are: aba, abcca, …

S → aXa
X → ε |bY

Y → ε |cXc



Derivation

▪ A derivation is a sequence of production

▪ S -> … -> … -> 

▪ A derivation can be drawn as a tree

▪ Start symbol is tree’s root
▪ For a production X -> Y1….Yn, add children Y1….Yn to node X



▪ Grammar

▪ E -> E + E | E * E | (E) | id


▪ String

▪ id * id + id


▪ Derivation


 E -> E + E


   -> E * E + E


   -> id * E + E


   -> id * id + E


   -> id * id + id

E

E

E

id

* E

id

+ E

id
Parse

Tree



Parse Tree

▪ A parse tree has

▪ Terminals at the leaves

▪ Non-terminals at the interior nodes


▪ An in-order traversal of the leaves is the original input


▪ The parse tree shows the association of operations, the input string does not



Parse Tree

▪ Left-most derivation

▪ At each step, replace the left-most non-

terminal

E -> E + E


   -> E * E + E


   -> id * E + E


   -> id * id + E


   -> id * id + id

▪ Right-most derivation
▪ At each step, replace the right-most non-

terminal

E -> E + E

   -> E + id

   -> E * E + id

   -> E * id + id

   -> id * id + id

Note that, right-most and left-most derivations have the same parse tree



Ambiguity

▪ Grammar

▪ E -> E + E | E * E | (E) | id


▪ String

▪ id * id + id

E

E

E

id

* E

id

+ E

id

E

E

id

* E

E

id

+ E

id



Ambiguity

▪ A grammar is ambiguous if it has more than one parse tree for a string

▪ There are more than one right-most or left-most derivation for some 

string

▪Ambiguity is bad
▪ Leaves meaning for some programs ill-defined



Example of Ambiguous Grammar

▪ S->SS | a | b



Resolving Ambiguity

▪ Most direct way to rewrite the grammar unambiguously


 

id * id + id

E = E′￼+ E |E′￼

E′￼= id * E′￼| id | (E) * E′￼| (E)



Resolving Ambiguity

▪ Impossible to convert ambiguous to unambiguous grammar automatically


▪ Instead of rewriting


▪ Use ambiguous grammar


▪ Along with disambiguating rules


▪ Eg, precedence and associativity rules 


▪ Enforces precedence of * over +


▪ associativity: %left + 



Abstract Syntax Trees

▪ A parser traces the derivation of a sequence of tokens


▪ But the rest of the compiler needs a structural representation of the 
program


▪ Abstract Syntax Trees

▪ Like parse trees but ignore some details
▪ Abbreviated as AST



Abstract Syntax Trees

▪ Grammar

▪ E -> int | ( E ) | E + E

▪String

▪ 5 + (2 + 3)

▪After lexical analysis

▪ Int<5> ‘+’ ‘(‘ Int<2> ‘+’ Int<3> ‘)’



Abstract Syntax Trees: 5 + ( 2 + 3)

E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)

Parse Trees



Abstract Syntax Trees: 5 + ( 2 + 3)

Parse Trees

• Have too much information

• Parentheses

• Single-successor nodes


E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)



Abstract Syntax Trees: 5 + ( 2 + 3)

+

Int<5> +

Int<2>

Int<3>

Parse Trees AST

• ASTs capture the nesting structure

• But abstracts from the concrete syntax

• More compact and easier to use

• Have too much information

• Parentheses

• Single-successor nodes


E

E

Int<5>

+ E

( E

E

Int<2>

+ E

Int<3>

)



Error Handling

▪ Purpose of the compiler is 

▪ To detect non-valid programs

▪ To translate the valid ones


▪ Many kinds of possible errors (e.g., in C)

Error Kind Example Detected by
Lexical Misspelling of identifiers, keywords, or 

operators.
… $ ... Lexer

Syntax Misplaced operators, semicolons, 
braces,  switch-case statements, etc.

… x*%... Parser

Semantic Type mismatches between operators 
and operands

… int x; y = 
x(3);...

Type Checker

Correctness Incorrect reasoning Using = instead 
of ==

tester/user



Error Handling

▪ Error Handler should

▪ Discover errors accurately and quickly

▪ Recover from an error quickly

▪ Not slow down compilation of valid code


▪ Types of Error Handling

▪ Panic mode

▪ Error productions

▪ Automatic local or global correction



Panic Mode Error Handling

▪ Panic mode is simplest and most popular method


▪ When an error is detected

▪ Discard tokens until one with a clear role is found


▪ Typically looks for “synchronizing” tokens

▪ Typically the statement of expression terminators

▪ Example:  delimiters (; }, etc.)


▪ Continue from there



Panic Mode Error Handling

▪ Example:

▪ (1 + + 2 ) + 3


▪ Panic-mode recovery:

▪ Skip ahead to the next integer and then continue


▪ Bison: use the special terminal error to describe how much input to skip

▪ E -> int | E + E | ( E ) | error int | ( error )

Normal mode Error mode



Error Productions

▪ Specify known common mistakes in the grammar


▪ Example:

▪ Write 5x instead of 5 * x

▪ Add production rule E -> .. | E E


▪ Disadvantages

▪ complicates the grammar



Error Corrections

▪ Idea: find a correct “nearby” program

▪ Try token insertions and deletions (goal: minimize edit distance)
▪ Exhaustive search

▪ Disadvantages

▪ Hard to implement
▪ Slows down parsing of correct programs
▪ “Nearby” is not necessarily “the intended” program



Error Corrections

▪ Past

▪ Slow recompilation cycle (even once a day)
▪ Find as many errors in one cycle as possible

▪ Disadvantages

▪ Quick recompilation cycle
▪ Users tend to correct one error/cycle
▪ Complex error recovery is less compelling



Parsing algorithm: Recursive Descent Parsing

▪ The parse tree is constructed 

▪ From the top
▪ From left to right

▪ Terminals are seen in order of appearance in the token stream



Parsing algorithm: Recursive Descent Parsing

▪ Grammar:

▪ E -> T | T + E
▪ T -> int | int * T | ( E )

▪ Token Stream: ( int<5> )


▪ Start with top level non-terminal E

▪ Try the rules for E in order



E -> T | T + E


T -> int | int * T | ( E )


( int<5> )

Recursive Descent Parsing Example

E

T

int

mismatch: int does not match arrowhead (

backtrack



E -> T | T + E


T -> int | int * T | ( E )


( int<5> )

Recursive Descent Parsing Example

E

T

int * T

backtrack



E -> T | T + E


T -> int | int * T | ( E )


( int<5> )

Recursive Descent Parsing Example

E

T

( E )

Match! Advance input



E -> T | T + E


T -> int | int * T | ( E )


( int<5> )

Recursive Descent Parsing Example

E

T

( E )

Match! Advance input

T

int



E -> T | T + E


T -> int | int * T | ( E )


( int<5> )

Recursive Descent Parsing Example

Match! Advance input

E

T

( E )

T

int



𝐸→𝐸′  |  𝐸′+𝐸                                                                                                            
𝐸′→−𝐸′  |  𝑖𝑑  |  (𝐸)


Input: id + id



A Recursive Descent Parser. Preliminaries 

▪ TOKEN: type of tokens 

▪  Special tokens INT, OPEN, CLOSE, PLUS, TIMES 


▪ The global next point to the next token 



A Top Down Parsing Algorithm 

void A() {


  Choose an A-production: 


  for (i=1 or k) {


     if (  is a nonterminal)


Call ;


      else if (  == current input TOKEN tok). /*terminal*/


             next++;


  } 


} 

A − > S1S2 . . . Sk;

Si

Si()

Xi

Recursion without 

backtracking



A (Limited) Recursive Descent Parser 

▪ Define boolean functions that check the token string for a match of 

▪ A given token terminal 

 bool term (TOKEN tok) { return *next++ == tok; } 


▪ The nth production of S: 

  bool Sn() { … } 


▪ Try all productions of S: 

  bool S() { … } 



A (Limited) Recursive Descent Parser 

▪ For production E → T 


  bool E1() { return T(); } 


▪ For production E → T + E 


  bool E2() { return T() && term(PLUS) && E(); } 


▪ For all productions of E (with backtracking) 

  bool E() { 

    TOKEN *save = next; 

    return (next = save, E1( )) || (next = save, E2( )); 

   }

Grammar: 


E -> T | T + E

T -> int | int * T | ( E )



A (Limited) Recursive Descent Parser (4) 

▪ Functions for non-terminal T 


  bool T1() { return term(INT); } 


  bool T2() { return term(INT) && term(TIMES) && T(); } 


  bool T3() { return term(OPEN) && E() && term(CLOSE); } 


  bool T() { 

         TOKEN *save = next; 

         return (next = save, T1())   || (next = save, T2())   || (next = save, T3()); 

  } 

Grammar: 


E -> T | T + E

T -> int | int * T | ( E )



Recursive Descent Parsing

▪ To start the parser 

▪ Initialize next to point to first token 
▪ Invoke E()  (start symbol)



Example

Grammar:
E → T |T + E 					

T → int | int * T | ( E ) 


Input: ( int ) 


Code: 

bool term(TOKEN tok) { return *next++ == tok; } 


bool E1() { return T(); } 

bool E2() { return T() && term(PLUS) && E(); } 

bool E() {TOKEN *save = next; 

         return (next = save, E1()) || (next = save, E2()); } 


bool T1() { return term(INT); } 

bool T2() { return term(INT) && term(TIMES) && T(); } 

bool T3() { return term(OPEN) && E() && term(CLOSE); } 

bool T() { TOKEN *save = next; 

     return (next = save, T1()) 

         || (next = save, T2()) 

         || (next = save, T3()); } 

E

T

( E )

T

int



Example

Grammar:
E → T |T + E 					

T → int | int * T | ( E ) 


Input: int 


Code: 

bool term(TOKEN tok) { return *next++ == tok; } 


bool E1() { return T(); } 

bool E2() { return T() && term(PLUS) && E(); } 

bool E() {TOKEN *save = next; 

         return (next = save, E1()) || (next = save, E2()); } 


bool T1() { return term(INT); } 

bool T2() { return term(INT) && term(TIMES) && T(); } 

bool T3() { return term(OPEN) && E() && term(CLOSE); } 

bool T() { TOKEN *save = next; 

     return (next = save, T1()) 

         || (next = save, T2()) 

         || (next = save, T3()); } 



When Recursive Descent Does Not Work 
Grammar:
E → T |T + E 					

T → int | int * T | ( E )      


Input: int * int


Code: 

bool term(TOKEN tok) { return *next++ == tok; } 


bool E1() { return T(); } 

bool E2() { return T() && term(PLUS) && E(); } 

bool E() {TOKEN *save = next; 

         return (next = save, E1()) || (next = save, E2()); } 


bool T1() { return term(INT); } 

bool T2() { return term(INT) && term(TIMES) && T(); } 

bool T3() { return term(OPEN) && E() && term(CLOSE); } 

bool T() { TOKEN *save = next; 

     return (next = save, T1()) 

         || (next = save, T2()) 

         || (next = save, T3()); } 



Recursive Descent Parsing: Limitation

▪ If production for non-terminal X succeeds
▪ Cannot backtrack to try different production for X later

▪ General recursive descent algorithms support such full backtracking
▪ Can implement any grammar

▪ Presented RDA is not general
▪ But easy to implement

▪ Sufficient for grammars where for any non-terminal at most one production can 
succeed

▪ The grammar can be rewritten to work with the presented algorithm
▪ By left factoring 



Left Factoring

   A -> I  


▪ The input begins with a nonempty string derived from , we do not know whether to 
expand A to . 


▪ We can defer the decision by expanding A to A'. 


▪ Then, after seeing the input derived from , we expand A' to  or (left-factored)


▪  The original productions become: 


     A -> , A’ -> I  

𝛼𝛽1  𝛼𝛽2

𝛼
𝛼𝛽1 or 𝛼𝛽2

𝛼

𝛼 𝛽1 𝛽2  

𝛼𝐴′￼  𝛽1  𝛽2



Left Factoring

▪ Recall the grammar 

E → T + E | T 

T → int | int * T | ( E )     


▪ Hard to predict because 

▪ For T two productions start with int 
▪ For E it is not clear how to predict 

▪We need to left-factor the grammar



Left-Factoring Example

▪ Grammar 

E → T + E | T 

T → int | int * T | ( E ) 


▪ Factor out common prefixes of productions 

E → T X 

X → + E | ε 

T → ( E ) | int Y 

Y → * T | ε



When Recursive Descent Does Not Work 

▪ Consider a production S → S a 

  bool S1() { return S() && term(a); } 

  bool S() { return S1(); } 


▪ S() goes into an infinite loop 


▪ A left-recursive grammar has a non-terminal S 


   S →+ Sα for some α 


▪ Recursive descent does not work for left recursive grammar



Elimination of Left Recursion

▪ Consider the left-recursive grammar 


S → S α | β


▪ S generates all strings starting with a β and followed by a number of α 


▪  Can rewrite using right-recursion 


S → β S’ 


       S’ → α S’ | ε



More Elimination of Left-Recursion

▪ In general 

S → S α1 | … | S αn | β1 | … | βm 

▪ All strings derived from S start with one of β1,…,βm and continue with 
several instances of α1,…,αn 


▪ Rewrite as 

S → β1 S’ | … | βm S’ 

S’ → α1 S’ | … | αn S’ | ε



General Left Recursion

▪ The grammar 

S → A α | δ 

A → S β 

is also left-recursive because 

S →+ S β α 

▪ This left-recursion can also be eliminated 



Example

▪ S-> Aa | b


▪ A —> A c | S d |     


▪ Remove Recursion. 

ϵ



▪ S - > A a | b.                 


▪ A -> b d A’ | A’


▪ A’ -> cA’ | a d A’  | a |      ϵ



Summary of Recursive Descent

▪ Simple and general parsing strategy 

▪ Left-recursion must be eliminated first 

▪ … but that can be done automatically 

▪ Unpopular because of backtracking 

▪ Thought to be too inefficient 

▪ In practice, backtracking is eliminated by restricting the grammar



Predictive Parsers

▪ Like recursive-descent but parser can “predict” which production to use 

▪ By looking at the next few tokens 

▪ No backtracking 

▪ Predictive parsers accept LL(k) grammars 

▪ L means “left-to-right” scan of input 
▪ L means “leftmost derivation” 
▪ k means “predict based on k tokens of lookahead” 
▪ In practice, LL(1) is used



LL(1) vs. Recursive Descent

▪ In recursive-descent

▪ At each step, many choices of production to use 
▪ Backtracking used to undo bad choices 

▪ In LL(1)

▪ At each step, only one choice of production 
▪ That is 


▪ When a non-terminal A is leftmost in a derivation 
▪ The next input symbol is t 
▪ There is a unique production A → α to use 

▪ Or no production to use (an error state) 

▪ LL(1) is a recursive descent variant without backtracking



Predictive Parsing and Left Factoring

▪ Recall the grammar 

E → T + E | T 

T → int | int * T | ( E )     


▪ Hard to predict because 

▪ For T two productions start with int 
▪ For E it is not clear how to predict 

▪We need to left-factor the grammar



Left-Factoring Example

▪ Grammar 

E → T + E | T 

T → int | int * T | ( E ) 


▪ Factor out common prefixes of productions 

E → T X 

X → + E | ε 

T → ( E ) | int Y 

Y → * T | ε



LL(1) Parsing Table Example

▪ Left-factored grammar 

E → T X 

X → + E | ε 

T → ( E ) | int Y 

Y → * T | ε 


▪ The LL(1) parsing table:

Left-most


non-
terminals

next input tokens
int * + ( ) $

E TX TX 
X +E ε ε 
T int Y ( E )
Y *T ε ε ε 



LL(1) Parsing Table Example (Cont.) 

▪ Consider the [E, int] entry 

▪ “When current non-terminal is E and next input is int, use production 

E → T X” 

▪ This can generate an int in the first position 


▪Consider the [Y,+] entry 

▪ “When current non-terminal is Y and current token is +, get rid of Y” 
▪ Y can be followed by + only if Y → ε



LL(1) Parsing Tables. Errors 

▪ Blank entries indicate error situations 


▪ Consider the [E,*] entry 

▪ “There is no way to derive a string starting with * from non-terminal 

E”



Using Parsing Tables 

▪ Method similar to recursive descent, except

▪ For the leftmost non-terminal S 

▪ We look at the next input token a 

▪ And choose the production shown at [S,a] 

▪ Reject on reaching error state 


▪ Accept on end of input & empty stack 



Bottom-Up Parsing

▪ Bottom-up parsing is more general than (deterministic) top-down parsing 

▪ just as efficient 

▪ Builds on ideas in top-down parsing 


▪ Bottom-up parsers don’t need left-factored grammars


▪ Revert to the “natural” grammar for our example: 

E → T + E | T 

T → int * T | int | (E) • 


▪ Consider the string: int * int + int



Bottom-Up Parsing

▪ Revert to the “natural” grammar for our example: 

E → T + E | T 

T → int * T | int | (E) • 


▪ Consider the string: int * int + int


▪ Bottom-up parsing reduces a string to the start symbol by inverting productions: 

    int * int + int 		 T → int 

    int * T  + int 		 T → int * T 

    T + int 			 T → int 

    T + T 			 E → T 

    T + E 			 E → T + E 

    E



Observation

▪ Read the productions in reverse (from bottom to top) 


▪ This is a rightmost derivation! 


    int * int + int 		 T → int 


    int * T  + int 		 T → int * T 


    T + int 				 T → int 


    T + T 				 E → T 


    T + E 				 E → T + E 


    E



Bottom-Up Parsing

▪ A bottom-up parser traces a rightmost derivation in reverse 

  int * int + int 		 T → int 

  int * T  + int 	  		 T → int * T 

  T + int 				 T → int 

  T + T 				 E → T 

  T + E 				 E → T + E 

  E



L, R, and all that

▪ LR parser: “Bottom-up parser”


▪ L = Left-to-right scan, R = Rightmost derivation 


▪ RR parser: R = Right-to-left scan (from end) 

▪ nobody uses these 


▪ LL parser: “Top-down parser”: 


▪ L = Left-to-right scan: L = Leftmost derivation 


▪ LR(1): LR parser that considers next token (lookahead of 1) 


▪ LR(0): Only considers stack to decide shift/reduce 


▪ SLR(1): Simple LR: lookahead from first/follow rules Derived from LR(0) automaton 


▪ LALR(1): Lookahead LR(1): fancier lookahead analysis Uses same LR(0) automaton as SLR(1)


