
SEMANTIC ANALYSIS
Baishakhi Ray

Programming Languages & Translators

These slides are motivated from Prof. Alex Aiken and Prof. Stephen Edward

Structure of a Typical Compiler

Intermediate Code
Generation

optimization

Code Generation

Lexical Analysis

Syntactic Analysis

Semantic Analysis

Interpreter

Character stream

Token stream

Syntax trees

Syntax trees

IR

IR

Target Language

Analysis Phase Synthesis Phase

The Compiler So Far

▪ Lexical analysis
▪ Detects inputs with illegal tokens

▪ Parsing
▪ Detects inputs with ill-formed parse trees

▪ Semantic analysis
▪ Last “front end” phase
▪ Catches all remaining errors

What’s Wrong With This?

a + f(b, c)
Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

What’s Wrong With This?

a + f(b, c)
Is a defined?

Is f defined?

Are b and c defined?

Is f a function of two arguments?

Can you add whatever a is to whatever f returns?

Does f accept whatever b and c are?

Scope questions Type questions

parsing
alone
cannot
answer these
question.

Scope

▪ The scope of an identifier is the portion of
a program in which that identifier is
accessible.

▪ The same identifier may refer to different
things in different parts of the program.
▪ Different scopes for same name don’t overlap.

▪ An identifier may have restricted scope.

Names Bindings Objects

Obj 1

Obj 2

Obj 3

Obj 4

Name1

Name2

Name3

Name4

Static Vs. Dynamic Scoping

▪ Most modern languages have static scope
▪ Scope depends only on the program text, not runtime behavior
▪ Most modern languages use static scoping. Easier to understand, harder to break

programs.

▪ A few languages are dynamically scoped
▪ Scope depends on execution of the program
▪ Lisp, SNOBOL (Lisp has changed to mostly static scoping)
▪ Advantage of dynamic scoping: ability to change environment.
▪ A way to surreptitiously pass additional parameters.

Basic Static Scope in C, C++, Java, etc.

A name begins life where it is declared
and ends at the end of its block.

From the CLRM, “The scope of an
identifier declared at the head of a
block begins at the end of its
declarator, and persists to the end of
the block.”

void foo()
{

int x;

}

Hiding a Definition

Nested scopes can hide earlier
definitions, giving a hole.

From the CLRM, “ I f an identifier is
explicitly declared at the head of a
block, including the block
constituting a function, any
declaration of the identifier outside
the block is suspended until the end
of the block.”

void foo()
{

int x;

while (a < 10) {
int x;

}

}

Dynamic Definitions in TEX

% \x, \y undefined
{

% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\ f i

% \x defined, \y may be undefined
}
% \x, \y undefined

Open vs. Closed Scopes

▪An open scope begins life including the symbols in its outer scope.

▪Example: blocks in Java

{
i n t x;
for (;;) {

/* x visible here */
}

}

▪A closed scope begins life devoid of symbols. Example: structures in C.

s truct foo { i n t x; f l o a t y ; }

Symbol Tables

▪ A symbol table is a data structure that tracks the current bindings of identifiers

▪ Can be implemented as a stack

▪ Operations
▪ add_symbol(x) push x and associated info, such as x’s type, on the stack
▪ find_symbol(x) search stack, starting from top, for x. Return first x found or NULL if

none found
▪ remove_symbol() pop the stack when out of scope

▪ Limitation:
▪ What if two identical objects are defined in the same scope multiple times.
▪ Eg: foo(int x, int x)

Advanced Symbol Table

▪ enter_scope() start a new nested scope

▪ find_symbol(x) finds current x (or null)

▪ add_symbol(x) add a symbol x to the table

▪ check_scope(x) true if x defined in current scope

▪ exit_scope() exit current scope

Advanced Symbol Table

▪ Class names can be used before they are defined.

▪ We can’t check class names using

▪ Symbol Tables and One pass

▪ Solution:

▪ Pass1: Gather all class names

▪ Pass2: Do the checking

▪ Semantic Analysis often require multiple passes

Types

▪ What is a type?
▪ A set of values
▪ A set of operations defined on those values
▪ However, the notion may vary from language to language

▪ Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

▪ Consider the assembly language fragment
add $r1, $r2, $r3

▪What are the types of $r1, $r2, $r3?

▪ Certain operations are legal for values of each type
▪ It doesn’t make sense to add a function pointer and an integer in C
▪ It does make sense to add two integers
▪ But both have the same assembly language implementation!

Type Systems
▪ A language’s type system specifies which operations are valid for which types

▪ The goal of type checking is to ensure that operations are used with the correct types
▪ Enforces intended interpretation of values, because nothing else will!

▪ Three kinds of languages:
▪ Statically typed: All or almost all checking of types is done as part of compilation (C, Java)
▪ Dynamically typed: Almost all checking of types is done as part of program execution

(Python)
▪ Untyped: No type checking (machine code)

Static vs. Dynamic Typing

▪ Static typing proponents say:
▪ Static checking catches many programming errors at compile time
▪ Avoids overhead of runtime type checks

▪ Dynamic typing proponents say:
▪ Static type systems are restrictive
▪ Rapid prototyping difficult within a static type system

▪ In practice
▪ code written in statically typed languages usually has an escape mechanism •

▪ Unsafe casts in C, Java
▪ Some dynamically typed languages support “pragmas” or “advice” • i.e., type declarations.

How To Check Expressions: Depth-first AST Walk

Checking function: environment → node → type

1 - 5

-

1 5

check(−)
check(1) = int
check(5) = int
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+)
check(1) = int
check("Hello") = string
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols
Checking function: environment → node → type

1 + a

+

1 a

check(+)
check(1) = int
check(a) = int Success:
int + int = int

The key operation: determining the type of a symbol when
it is encountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.

A Static Semantic Checking Function

A big function: “check: ast → sast”
Converts a raw AST to a “semantically checked AST”
Names and types resolved

AST
type expression =

 IntConst of int
 | Id of string
 | Call of string * expression list
 | ...

SAST
type expr_detail =

IntConst of int
 | Id of variable_decl
 | Call of function_decl * expression list
 | ...type expression = expr_detail * Type.t

Strong vs. Weak Typing

• A program introduces type-confusion when it attempts to interpret a
memory region populated by a datum of specific type T1, as an instance
of a different type T2 and T1 and T2 are not related by inheritance.

• Strongly typed if it explicitly detects type confusion and reports it
as such

• (e.g., with Java).

• Weakly typed if type-confusion can occur silently (undetected), and
eventually cause errors that are difficult to localize.

• C and C++ are considered weakly typed since, due to type-casting,
one can interpret a field of a structure that was an integer as a
pointer.

Question

1. #include <stdio.h> int main() { int i = 0; char j = '5'; printf("%d\n", (i+j)); return 0; }

(Single Choice)

Answer 1: error

Answer 2: 5

Answer 3: 53

Answer 4: None

2. int main() { float p = 0.5; char* q = "hello"; int c = p + q; printf("%d\n",c); return 0; }

(Single Choice)

Answer 1: error

Answer 2: 4195796

Answer 3: other

Question

1. What would be the output of the following Python Code?

 def type_check(a):

 p = 7

 return (p + a)

 print(type_check('4'))

 (Single Choice)

Answer 1: error

Answer 2: 11

Answer 3: 74

2. What would be the output of the following Python Code?

 def type_check(a):

 p = 7

 return (p + a)

 print(type_check(4))

 (Single Choice)

Answer 1: error

Answer 2: 11

Answer 3: 74

Question

1. What will be the output of the following Java code?

class Test {

 public static void main(String args[]) {

for (int x = 0; x < 4; x++) { ... }

 System.out.println(x); }

}

Answer 1: 3

Answer 2: error

Answer 3: 4

