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The Compiler So Far 

▪ Lexical analysis 
▪ Detects inputs with illegal tokens 

▪ Parsing 
▪ Detects inputs with ill-formed parse trees 

▪ Semantic analysis  
▪ Last “front end” phase 
▪ Catches all remaining errors 



What’s Wrong With This?

a + f(b, c)
Is a defined?  

Is f defined? 

Are b and c defined? 

Is f a function of two arguments? 

Can you add whatever a is to whatever f returns? 

Does f accept whatever b and c are? 

Scope questions Type questions
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Scope

▪ The scope of an identifier is the portion of 
a program in which that identifier is 
accessible.

▪ The same identifier may refer to different 
things in different parts of the program.
▪ Different scopes for same name don’t overlap. 

▪ An identifier may have restricted scope.
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Static Vs. Dynamic Scoping

▪ Most modern languages have static scope 
▪ Scope depends only on the program text, not runtime behavior 
▪ Most modern languages use static scoping. Easier to understand, harder to break 

programs.

▪ A few languages are dynamically scoped 
▪ Scope depends on execution of the program 
▪ Lisp, SNOBOL (Lisp has changed to mostly static scoping)
▪ Advantage of dynamic scoping: ability to change  environment.
▪ A way to surreptitiously pass additional parameters.



Basic Static Scope in C, C++, Java, etc.

A name begins life where it is  declared 
and ends at the end  of its block.

From the CLRM, “The scope  of an 
identifier declared at  the head of a 
block begins at  the end of its 
declarator, and  persists to the end of 
the  block.”

void foo()
{

int x;

}



Hiding a Definition

Nested scopes can hide earlier  
definitions, giving a hole.

From the CLRM, “ I f  an  identifier is 
explicitly declared  at the head of a 
block,  including the block  
constituting a function, any  
declaration of the identifier  outside 
the block is  suspended until the end 
of  the block.”

void foo()
{

int x;

while ( a < 10 ) {
int x;

}

}



Dynamic Definitions in TEX

% \x, \y undefined
{

% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2

\ f i  

% \x defined, \y may be undefined
}
% \x, \y undefined



Open vs. Closed Scopes

▪An open scope begins life including the symbols in its outer  scope. 

▪Example: blocks in Java 

{ 
i n t  x; 
for (;;) { 

/* x visible here */ 
} 

} 

▪A closed scope begins life devoid of symbols.  Example: structures in C. 

s truct  foo  {  i n t  x;  f l o a t  y ; }



Symbol Tables 

▪ A symbol table is a data structure that tracks the current bindings of identifiers 

▪ Can be implemented as a stack 

▪ Operations 
▪ add_symbol(x) push x and associated info, such as x’s type, on the stack 
▪ find_symbol(x) search stack, starting from top, for x. Return first x found or NULL if 

none found 
▪ remove_symbol() pop the stack when out of scope

▪ Limitation:
▪ What if two identical objects are defined in the same scope multiple times.
▪ Eg: foo(int x, int x)



Advanced Symbol Table

▪ enter_scope() start a new nested scope 

▪ find_symbol(x) finds current x (or null) 

▪ add_symbol(x) add a symbol x to the table 

▪ check_scope(x) true if x defined in current scope 

▪ exit_scope() exit current scope



Advanced Symbol Table

▪ Class names can be used before they are defined. 

▪ We can’t check class names using 

▪ Symbol Tables and One pass

▪ Solution:

▪ Pass1: Gather all class names

▪ Pass2: Do the checking

▪ Semantic Analysis often require multiple passes



Types

▪ What is a type? 
▪ A set of values 
▪ A set of operations defined on those values 
▪ However,  the notion may vary from language to language

▪ Classes are one instantiation of the modern notion of type 



Why Do We Need Type Systems? 

▪ Consider the assembly language fragment 
add $r1, $r2, $r3 

▪What are the types of $r1, $r2, $r3? 

▪ Certain operations are legal for values of each type 
▪ It doesn’t make sense to add a function pointer and an integer in C 
▪ It does make sense to add two integers
▪ But both have the same assembly language implementation! 



Type Systems
▪ A language’s type system specifies which operations are valid for which types 

▪ The goal of type checking is to ensure that operations are used with the correct types 
▪ Enforces intended interpretation of values, because nothing else will! 

▪ Three kinds of languages: 
▪ Statically typed: All or almost all checking of types is done as part of compilation (C, Java) 
▪ Dynamically typed: Almost all checking of types is done as part of program execution 

(Python) 
▪ Untyped: No type checking (machine code) 



Static vs. Dynamic Typing

▪ Static typing proponents say: 
▪ Static checking catches many programming errors at compile time 
▪ Avoids overhead of runtime type checks 

▪ Dynamic typing proponents say: 
▪ Static type systems are restrictive 
▪ Rapid prototyping difficult within a static type system 

▪ In practice 
▪ code written in statically typed languages usually has an escape mechanism • 

▪ Unsafe casts in C, Java 
▪ Some dynamically typed languages support “pragmas” or “advice” • i.e., type declarations.



How To Check Expressions: Depth-first AST Walk

Checking function: environment →  node →  type

1 - 5

-

1 5

check(− )
check(1) = int  
check(5) = int 
Success: int − int = int

1 + "Hello"

+

1 "Hello"

check(+) 
check(1) = int  
check("Hello") = string 
FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true  
about the nodes below it? What is the type of the node?



How To Check: Symbols
Checking function: environment →  node →  type 

1 + a 

+

1 a

check(+) 
check(1) = int  
check(a) = int  Success: 
int + int = int 

The key operation: determining the type of a symbol when  
it is encountered. 

The environment provides a “symbol table” that holds  
information about each in-scope symbol.



A Static Semantic Checking Function

A big function: “check: ast →  sast”
Converts a raw AST to a “semantically checked AST”
Names and types resolved

AST
type expression = 

 IntConst  of int
      | Id of string
      | Call of string * expression list
      | ...

SAST 
type expr_detail =

IntConst  of int
     | Id of variable_decl
     | Call of function_decl * expression list
     | ...type expression = expr_detail * Type.t



Strong vs. Weak Typing

• A program introduces type-confusion when it attempts to interpret a 
memory region populated by a datum of specific type T1, as an instance 
of a different type T2 and T1 and T2 are not related by inheritance. 

• Strongly typed if it explicitly detects type confusion and reports it 
as such  

• (e.g., with Java).  

• Weakly typed if type-confusion can occur silently (undetected), and 
eventually cause errors that are difficult to localize.  

• C and C++ are considered weakly typed since, due to type-casting, 
one can interpret a field of a structure that was an integer as a 
pointer.



Question

1. #include <stdio.h> int main() { int i = 0; char j = '5'; printf("%d\n", (i+j)); return 0; } 

( Single Choice) 

Answer 1: error 

Answer 2: 5 

Answer 3: 53 

Answer 4: None 

2. int main() { float p = 0.5; char* q = "hello"; int c = p + q; printf("%d\n",c); return 0; } 

( Single Choice) 

Answer 1: error 

Answer 2: 4195796 

Answer 3: other



Question

1. What would be the output of the following Python Code?  

   def type_check(a):  

       p = 7 

      return (p + a) 

   print(type_check('4'))  

 ( Single Choice) 

Answer 1: error 

Answer 2: 11 

Answer 3: 74 
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      return (p + a) 

   print(type_check(4))  

   ( Single Choice) 

Answer 1: error 

Answer 2: 11 

Answer 3: 74



Question

1. What will be the output of the following Java code?  

class Test {  

 public static void main(String args[]) {  

for (int x = 0; x < 4; x++) { ... }  

   System.out.println(x); }  

} 

Answer 1: 3 

Answer 2: error 

Answer 3: 4 


