Programming Languages & Translators

SEMANTIC ANALYSIS

Baishakhi Ray

These slides are motivated from Prof. Alex Aiken and Prof. Stephen Edward m

Structure of a Typical Compiler

Character stream Synthesis Phase
_—y,

Analysis Phase
/

\
Intermediate Code
Generation

gl HII HII III Il Il I S

\
I
I
I
I
I
I
I
I
I
I

Interpreter

The Compiler So Far

= Lexical analysis
= Detects inputs with illegal tokens

= Parsing
= Detects inputs with ill-formed parse trees

= Semantic analysis
= Last “front end” phase
= Catches all remaining errors

What's Wrong With This?

a + f(b, c)

What's Wrong With This?

a + f(b, c)

Is a defined?
Is f defined?
Are b and c defined? parsing
: alone
f)
Is fa function of two arguments” o cannot
Can you add whatever a is to whatever f returns? answer these
question.

Does f accept whatever b and c are?

Scope questions Type questions

Scope

Names Bindings Objects
= The scope of an identifier is the portion of
a program in which that identifier is _
accessible. Name1 .| Obj 1
= The same identifier may refer to different
things in different parts of the program.
= Different scopes for same name don’t overlap. Name2 - Obj 2
= An identifier may have restricted scope.
Name3

Name4 ~(Obj4

Static Vs. Dynamic Scoping

= Most modern languages have static scope
= Scope depends only on the program text, not runtime behavior

= Most modern languages use static scoping. Easier to understand, harder to break
programs.

= A few languages are dynamically scoped
= Scope depends on execution of the program
= Lisp, SNOBOL (Lisp has changed to mostly static scoping)
= Advantage of dynamic scoping: ability to change environment.
= A way to surreptitiously pass additional parameters.

Basic Static Scope in G, C++, Java, etc.

A name begins life where it is declared void foo()
and ends at the end of its block. {

int x;

From the CLRM, “The scope of an 1
identifier declared at the head ofa

block begins at the end ofits

declarator, and persists to the end of

the block.”

Hiding a Definition

Nested scopes can hide earlier
definitions, giving ahole.

From the CLRM, “If an identifier is
explicitly declared at the head of a
block, including the block
constituting a function, any
declaration of the identifier outside
the block is suspended until the end
of the block.”

void foo()

Dynamic Definitions in TEX

% \x, \y undefined
{
% \x, \y undefined
\def \x 1
% \x defined, \y undefined

\ifnum \a < 5
\def \y 2
\fi

% \x defined, \y may be undefined

¥
% \x, \y undefined

Open vs. Closed Scopes

=An open scope begins life including the symbols in its outer scope.

»Example: blocks in Java

{int X;
for (;;)1{

/« X visible here «/

}
b

= A closed scope begins life devoid of symbols. Example: structures in C.

struct foo { int x; float y; }

Symbol Tables

= A symbol table is a data structure that tracks the current bindings of identifiers
= Can be implemented as a stack

= Operations
= add_symbol(x) push x and associated info, such as x’s type, on the stack

= find_symbol(x) search stack, starting from top, for x. Return first x found or NULL if
none found

= remove_symbol() pop the stack when out of scope

= Limitation:
= What if two identical objects are defined in the same scope multiple times.
= Eg: foo(int x, int x)

Advanced Symbol Table

enter_scope() start a new nested scope

find_symbol(x) finds current x (or null)

add_symbol(x) add a symbol x to the table

check_scope(x) true if x defined in current scope

exit_scope() exit current scope

Advanced Symbol Table

Class names can be used before they are defined.

We can’t check class names using
= Symbol Tables and One pass

= Solution:

= Pass1: Gather all class names

= Pass2: Do the checking

= Semantic Analysis often require multiple passes

Types

= What is a type?
= Aset of values
= A set of operations defined on those values
= However, the notion may vary from language to language

= Classes are one instantiation of the modern notion of type

Why Do We Need Type Systems?

= Consider the assembly language fragment
add $r1, $r2, $r3

= What are the types of $r1, $r2, $r3?

= Certain operations are legal for values of each type
= |t doesn’t make sense to add a function pointer and an integer in C
= [t does make sense to add two integers
= But both have the same assembly language implementation!

Type Systems

= Alanguage’s type system specifies which operations are valid for which types

= The goal of type checking is to ensure that operations are used with the correct types
= Enforces intended interpretation of values, because nothing else will!

= Three kinds of languages:
= Statically typed: All or almost all checking of types is done as part of compilation (C, Java)

= Dynamically typed: Almost all checking of types is done as part of program execution
(Python)

= Untyped: No type checking (machine code)

Static vs. Dynamic Typing

= Static typing proponents say:
= Static checking catches many programming errors at compile time
= Avoids overhead of runtime type checks

= Dynamic typing proponents say:
= Static type systems are restrictive
= Rapid prototyping difficult within a static type system

= |n practice

= code written in statically typed languages usually has an escape mechanism -
» Unsafe casts in C, Java

= Some dynamically typed languages support “pragmas” or “advice” « i.e., type declarations.

How To Check Expressions: Depth-first AST Walk

Checking function: environment - node - type

1 -5 ' 1 + "Hello" '
- +
/N /N
1 5 1 "Hello"
check(-) check(+)

check(1) =int check(1) = int
check(5) =int check("Hello") =string
Success: int —int = int FAIL: Can’t add int and string

Ask yourself: at each kind of node, what must be true
about the nodes below it? What is the type of the node?

How To Check: Symbols

Checking function: environment - node - type

check(+)
check(1) = int
check(a) = int Success:
int +int =int

The key operation: determining the type ofa symbol when
it isencountered.

The environment provides a “symbol table” that holds
information about each in-scope symbol.

A Static Semantic Checking Function

A big function: “check: ast -+ sast”
Converts a raw ASTto a “semantically checked AST”

Names and types resolved

AST SAST
type expression = type expr_detail =
IntConst of int IntConst of int

| Id of string | Id of variable_decl
| Call of string * expression list | Call of function_decl * expression list
| ... | ...type expression = expr_detail * Type.t

Strong vs. Weak Typing

* A program introduces type-confusion when it attempts to interpret a
memory region populated by a datum of specific type Tl, as an instance
of a different type T2 and Tl and T2 are not related by inheritance.

e Strongly typed 1f 1t explicitly detects type confusion and reports it
as such

e (.g., with Java).

e Weakly typed 1f type-confusion can occur silently (undetected), and
eventually cause errors that are difficult to localize.

e C and C++ are considered weakly typed since, due to type-casting,

one can 1interpret a field of a structure that was an integer as a
pointer.

Question

1. #include <stdio.h> int main() { int i = 0; char 7 = '5'; printf ("%d\n", (i+3J)); return 0; }

(Single Choice)
Answer 1l: error
Answer 2: 5
Answer 3: 53

Answer 4: None

2. int main() { float p = 0.5; char* g = "hello"; int ¢ = p + g; printf ("%d\n",c); return 0; }
(Single Choice)

Answer 1: error
Answer 2: 4195796

Answer 3: other

Question

1. What would be the output of the following Python Code?
def type check(a):
p =7
return (p + a)

print (type check('4'))

(Single Choice)
Answer 1l: error
Answer 2: 11

Answer 3: 74

2. What would be the output of the following Python Code?
def type check(a):
p =17
return (p + a)
print (type check (4))
(Single Choice)
Answer l: error
Answer 2: 11

Answer 3: 74

Question

1. What will be the output of the following Java code?

class Test {
public static void main(String args|[]) {
for (int x = 0; x < 4; x++) { ... }

System.out.println(x); }

Answer 1: 3
Answer 2: error

Answer 3: 4

