
Data Flow Analysis
Baishakhi Ray

Programming Languages & Translators

Data flow analysis

• Derives information about the dynamic
behavior of a program by only examining
the static code

• Intraprocedural analysis
• Flow-sensitive: sensitive to the control

flow in a function

• Examples
– Live variable analysis
– Constant propagation
– Common subexpression elimination
– Dead code detection

1 a := 0
2 L1: b := a + 1

3 c := c + b
4 a := b * 2
5 if a < 9 goto L1
6 return c

• How many registers do we need?
• Easy bound: # of used variables (3)
• Need better answer

Dataflow Analysis Applications

• Live Variable Analysis
• Efficient register allocation: optimization

• Reaching Definition Analysis
• Find usage of uninitialized variables: bug detection
• Dead-code elimination: optimization

• Available Expression Analysis
• Avoid recomputing expression: optimization

• Very Busy Expression Analysis
• Reduce code size: optimization

Data flow analysis (DFA)

• Statically: finite program path
• Dynamically: can have infinitely many paths

• For each point in the program, DFA combines information of all instances
of the same program point

Example 1: Liveness Analysis

Liveness Analysis

Definition
–A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).

–To compute liveness at a given point, we need to look into the
future

Motivation: Register Allocation
–A program contains an unbounded number of variables
– Must execute on a machine with a bounded number of registers
–Two variables can use the same register if they are never in use at
the same time (i.e, never simultaneously live).

–Register allocation uses liveness information

Control Flow Graph

• Let’s consider CFG where nodes
contain program statement instead
of basic block.
• Example

1. a := 0
2. L1: b := a + 1
3. c:= c + b
4. a := b * 2
5. if a < 9 goto L1
6. return c

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness by Example

• Live range of b
• Variable b is read in line 4, so b

is live on 3->4 edge
• b is also read in line 3, so b is

live on (2->3) edge
• Line 2 assigns b, so value of b

on edges (1->2) and (5->2) are
not needed. So b is dead along
those edges.

• b’s live range is (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness by Example

• Live range of a
• (1->2) and (4->5->2)
• a is dead on (2->3->4)

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Terminology

• Flow graph terms
• A CFG node has out-edges that lead

to successor nodes and in-edges
that come from predecessor nodes

• pred[n] is the set of all
predecessors of node n

• succ[n] is the set of all successors
of node n

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Examples
– Out-edges of node 5: (5→6) and (5→2)

– succ[5] = {2,6}
– pred[5] = {4}
– pred[2] = {1,5}

Uses and Defs

Def (or definition)
– An assignment of a value to a variable
– def[v] = set of CFG nodes that define variable v
– def[n] = set of variables that are defined at node n

Use
– A read of a variable’s value
– use[v] = set of CFG nodes that use variable v
– use[n] = set of variables that are used at node n

More precise definition of liveness
– A variable v is live on a CFG edge if
(1)∃ a directed path from that edge to a use of v (node in

use[v]), and
(2)that path does not go through any def of v (no nodes in

def[v])

a = 0

a < 9

∉ def[v]

∈ use[v]

v live

The Flow of Liveness

• Data-flow
• Liveness of variables is a property that

flows through the edges of the CFG

• Direction of Flow
• Liveness flows backwards through the

CFG, because the behavior at future
nodes determines liveness at a given
node

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness at Nodes

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

a = 0
Just before computation

Just after computation

Two More Definitions
– A variable is live-out at a node if it is live on
any out edges

– A variable is live-in at a node if it is live on any in
edges

Computing Liveness

• Generate liveness: If a variable is in use[n], it is live-in at node n
• Push liveness across edges:
• If a variable is live-in at a node n
• then it is live-out at all nodes in pred[n]

• Push liveness across nodes:
• If a variable is live-out at node n and not in def[n]
• then the variable is also live-in at n

• Data flow Equation: in[n] = use[n]⋃ (out[n] − def [n])

out[n] = ⋃
s∈succ[n]

in[s]

Solving Dataflow Equation

for each node n in CFG
 in[n] = ∅; out[n] = ∅
repeat
 for each node n in CFG
 in’[n] = in[n]
 out’[n] = out[n]
 in[n] = use[n] ∪ (out[n] – def[n])
 out[n] = ∪ in[s]
 s ∈ succ[n]
until in’[n]=in[n] and out’[n]=out[n] for all n

Initialize solutions

Save current results

Solve data-flow equation

Test for convergence

Computing Liveness Example

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Iterating Backwards: Converges Faster

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

A variable is live at a particular point in the program if its value
at that point will be used in the future (dead, otherwise).

Node use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Node use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: c

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Liveness Example: Round1

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No

Yes

Node use def

6 c

5 a

4 b a

3 bc c

2 a b

1 a

in: c

in: ac

out: ac

in: bc

out: ac

in: bc

out: bc

in: ac

out: bc

in: c

out: ac

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No YesSolution X:
- From the previous slide

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Solution Y:
Carries variable d uselessly
– Does Y lead to a correct program?

Imprecise conservative solutions ⇒ sub-optimal but correct programs

Conservative Approximation

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

Solution Z:
Does not identify c as live in all cases
– Does Z lead to a correct program?

Non-conservative solutions ⇒ incorrect programs

Soundness vs. Completeness

• Dataflow analysis sacrifices completeness

• Dataflow analysis is sound
• Report facts that could occur

Need for approximation

• Static vs. Dynamic Liveness: b*b is always non-negative, so c >= b is
always true and a’s value will never be used after node

No compiler can statically identify
all infeasible paths

Liveness Analysis Example Summary

• Live range of a
• (1->2) and (4->5->2)

• Live range of b
• (2->3->4)

• Live range of c
• Entry->1->2->3->4->5->2, 5->6

You need 2 registers Why?

4. a = b * 2

2. b = a + 1

1. a = 0

3. c = c + b

5. a < 9

6. return c

No Yes

• Definition: A definition d of a variable v reaches node n if there is a path
from d to n such that v is not redefined along that path.

Reaching Definition

Reaching Definition

1. example() {
2. b=0;
3. for(a=0; a< 5; a++) {
4. b = b + a;
5. while(b!=0)
6. b = b - 1;
7. }
8. return(b);
9. }

n9. return(b)

Computing Reaching Definition

• Assumption: At most one definition per node

• Gen[n]: Definitions that are generated by node n (at most one)
• Kill[n]: Definitions that are killed by node n

Generic Dataflow Analysis

• IN[n] = set of facts at the entry of node n

• OUT[n] = set of facts at the exit of node n

• Analysis computes IN[n] and OUT[n] for each node

• Repeat this operation until IN[n] and OUT[n] stops changing
• fixed point

Data-flow equations for Reaching Definition

OUT[n] = GEN[n]⋃ (IN[n] − KILL[n])

IN[n] = ⋃
p∈pred[n]

OUT[p]

n9. return(b)

Recall Liveness Analysis

• Data-flow Equation for liveness

• Liveness equations in terms of Gen and Kill

Gen: New information that’s added at a node
Kill: Old information that’s removed at a node

Can define almost any data-flow analysis in terms of Gen and Kill

Direction of Flow

Data-Flow Equation for reaching definition

Available Expression

• An expression, x+y, is available at node n if every path from the entry node
to n evaluates x+y, and there are no definitions of x or y after the last
evaluation.

Available Expression for CSE

• Common Subexpression eliminated
• If an expression is available at a point where it is evaluated, it need not

be recomputed

Very Busy Expression

• An expression is very busy if, no matter
what path is taken, the expression is used
before any of the variables occurring in it
are redefined.
• b-a is very busy at the loop entry point.
• a-b is not very busy as a is redefined

along the False edge.

Must vs. May analysis

• May information: Identifies possibilities
• Must information: Implies a guarantee

May Must

Forward Reaching Definition Available Expression

Backward Live Variables Very Busy Expression

