
Introduction of Clang/LLVM
Dongdong She, Yangruibo Ding

Department of Computer Science, Columbia University

Adapted from Cornell Prof. Adrian Sampyso’s blog.

Overview

● General Introduction of Clang/LLVM.
○ What is LLVM?
○ LLVM Architecture
○ LLVM IR
○ LLVM Pass

● Program Analysis with LLVM: Example.
● Write a Function Pass

○ Translate source code into LLVM IR using Clang
○ Identify basic blocks of LLVM IR
○ Control Flow Graphs
○ PA-3: Generate and Analyze CFG with LLVM Pass

Overview

● General Introduction of Clang/LLVM.
○ What is LLVM?
○ LLVM Architecture
○ LLVM IR
○ LLVM Pass

● Program Analysis with LLVM: Example.
○ Write a Function Pass
○ Translate source code into LLVM IR using Clang
○ Identify basic blocks of LLVM IR
○ Control Flow Graphs
○ PA-3: Generate and Analyze CFG with LLVM Pass

What is LLVM

● An awesome compiler for native languages like C/C++/Swift.
○ Huge impact in both academia and industry.
○ A large amount of research works in SE and Sec are based on LLVM.
○ LLVM is widely used in industry to build real world applications.

● Static single assignment (SSA) based intermediate representation (IR).
○ Each variable is only assigned once.
○ Avoid any value assignment ambiguity for easier and more accurate optimization.

● Modular design, easy to hack.

Usage of LLVM

● Academic research
○ Essential tool for various program analysis tasks.
○ Symbolic execution(klee)
○ Information flow analysis(DFSan, Phasar)
○ Find security-related bugs(Clang static analyzer)
○ Coverage-based fuzzing (Libfuzzer)

● Industry application
○ Apple’s iOS, MacOS are built with LLVM.
○ Most tech companies maintain their private LLVM fork to build their products.

LLVM Architecture

● Front end: translate code into IR. (Your prog-hw2)
● Pass: translate IR to IR with various optimization. (Your future prog-hw)
● Back end: translate IR to machine code. (Rarely used in practice)
● All three components is hackable.

LLVM IR

LLVM IR Components

● Module: A single translation unit, normally
equivalent to a source file.

● Function: represent a function defined in
source code.

● BasicBlock: a chunk of sequentially executed
instructions without branch.

● Instruction: a single code operation.

LLVM IR

LLVM IR Example

i32 %5 = add i32 %4, 2

● Opcode:
○ add: represents addition operation

● Source Operand:
○ i32 %4: a 32-bit long register named with “4”
○ 2: a number literal

● Destination Opcode:
○ i32 %5: A 32-bit long register named with “5”

● Semantic: Add %4 and 2, put results into %5.

LLVM Pass

LLVM pass transform IR to IR with various optimizations.

An simple LLVM Pass example: print every IR instructions.
for (auto& F : M) { // iterate every function inside a module

 for (auto& B : F) { // iterate every BB inside a function

 for (auto& I : B) { // iterate every instruction inside a function

 errs() << "Instruction: " << I << "\n"; // print instruction

 }

 }

}

Overview

● General Introduction of Clang/LLVM.
○ What is LLVM?
○ LLVM Architecture
○ LLVM IR
○ LLVM Pass

● Program Analysis with LLVM: Example.
○ Write a Function Pass
○ Translate source code into LLVM IR using Clang
○ Identify basic blocks of LLVM IR
○ Control Flow Graphs
○ PA-3: Generate and Analyze CFG with LLVM Pass

Example: Bubble Sort

Write a Function Pass

Write a Function Pass - Hello

opt -load lib/LLVMHello.so -hello < bubble.bc

Hello: swap
Hello: bubbleSort
Hello: printArray
Hello: main

LLVM IR

Control Flow Graph

Basic Blocks

Basic Blocks

● A basic block is a straight-line code sequence with no branches in except to
the entry and no branches out except at the exit.

● Compilers usually decompose programs into their basic blocks as a first step
in the analysis process. Basic blocks form the vertices or nodes in a
control-flow graph

Basic Blocks

● A basic block is a straight-line code sequence with no branches in except to
the entry and no branches out except at the exit.

● Compilers usually decompose programs into their basic blocks as a first step
in the analysis process. Basic blocks form the vertices or nodes in a
control-flow graph

PA-3: Generate and Analyze CFG with LLVM Pass

PA-3: Generate and Analyze CFG with LLVM Pass

● Announcement Date: Today, Nov. 10
● Due Date: Wednesday, Nov. 24
● LLVM version should be <= 12.x.x
● START EARLY !!!!!

